On the continuity of Weil-Petersson volumes of the moduli space weighted points on the projective line

被引:0
作者
Tambasco, Salvatore [1 ]
机构
[1] Univ Pavia, Pavia, Italy
关键词
Intersection Theory; Geometric Invariant Theory; K-moduli spaces; Weil-Petersson geometry; K-STABILITY;
D O I
10.1515/coma-2021-0137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.
引用
收藏
页码:206 / 222
页数:17
相关论文
共 23 条
[1]  
Alexeev V., 2015, ADV COURSES MATH CRM
[2]  
Alexeev V, 2008, Arxiv, DOI arXiv:0806.0881
[3]  
Ascher K, 2024, Arxiv, DOI arXiv:1909.04576
[4]   Positivity of the CM line bundle for families of K-stable klt Fano varieties [J].
Codogni, Giulio ;
Patakfalvi, Zsolt .
INVENTIONES MATHEMATICAE, 2021, 223 (03) :811-894
[5]   LOCAL MODELS FOR CONICAL KAHLER-EINSTEIN METRICS [J].
de Borbon, Martin ;
Spotti, Cristiano .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) :1217-1230
[6]  
DELIGNE P, 1986, PUBL MATH-PARIS, P5
[7]  
Dolgachev I., 2003, LONDON MATH SOC LECT, V296
[8]  
Dwivedi S., 2019, SpringerBriefs in Mathematics
[9]   Uniform K-stability and plt blowups of log Fano pairs [J].
Fujita, Kento .
KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (02) :399-418
[10]   A valuative criterion for uniform K-stability of Q-Fano varieties [J].
Fujita, Kento .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 :309-338