High-resolution seismic tomography of Long Beach, CA using machine learning

被引:39
作者
Bianco, Michael J. [1 ]
Gerstoft, Peter [1 ]
Olsen, Kim B. [1 ,2 ]
Lin, Fan-Chi [3 ]
机构
[1] Univ Calif San Diego, NoiseLab, La Jolla, CA 92093 USA
[2] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA
[3] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA
关键词
SURFACE-WAVE TOMOGRAPHY; CALIFORNIA; MICROSEISMS; TRACKING; DENSITY; SPARSE;
D O I
10.1038/s41598-019-50381-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use a machine learning-based tomography method to obtain high-resolution subsurface geophysical structure in Long Beach, CA, from seismic noise recorded on a "large-N" array with 5204 geophones (similar to 13.5 million travel times). This method, called locally sparse travel time tomography (LST) uses unsupervised machine learning to exploit the dense sampling obtained by ambient noise processing on large arrays. Dense sampling permits the LST method to learn directly from the data a dictionary of local, or small-scale, geophysical features. The features are the small scale patterns of Earth structure most relevant to the given tomographic imaging scenario. Using LST, we obtain a high-resolution 1 Hz Rayleigh wave phase speed map of Long Beach. Among the geophysical features shown in the map, the important Silverado aquifer is well isolated relative to previous surface wave tomography studies. Our results show promise for LST in obtaining detailed geophysical structure in travel time tomography studies.
引用
收藏
页数:11
相关论文
共 46 条
[1]  
Aki K, 2002, QUANTITATIVE SEISMOL
[2]   A fast and reliable method for surface wave tomography [J].
Barmin, MP ;
Ritzwoller, MH ;
Levshin, AL .
PURE AND APPLIED GEOPHYSICS, 2001, 158 (08) :1351-1375
[3]   SEISMIC PROPERTIES OF PORE FLUIDS [J].
BATZLE, M ;
WANG, ZJ .
GEOPHYSICS, 1992, 57 (11) :1396-1408
[4]   Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J].
Bensen, G. D. ;
Ritzwoller, M. H. ;
Barmin, M. P. ;
Levshin, A. L. ;
Lin, F. ;
Moschetti, M. P. ;
Shapiro, N. M. ;
Yang, Y. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) :1239-1260
[5]   Machine learning for data-driven discovery in solid Earth geoscience [J].
Bergen, Karianne J. ;
Johnson, Paul A. ;
de Hoop, Maarten V. ;
Beroza, Gregory C. .
SCIENCE, 2019, 363 (6433) :1299-+
[6]  
Bianco M. J., 2018, IEEE T COMPUT IMAG
[7]   Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA [J].
Bowden, D. C. ;
Tsai, V. C. ;
Lin, F. C. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (05) :1360-1367
[8]   Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations [J].
Brenguier, F. ;
Campillo, M. ;
Hadziioannou, C. ;
Shapiro, N. M. ;
Nadeau, R. M. ;
Larose, E. .
SCIENCE, 2008, 321 (5895) :1478-1481
[9]   Empirical relations between elastic wavespeeds and density in the earth's crust [J].
Brocher, TA .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2005, 95 (06) :2081-2092
[10]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745