Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrodinger equations

被引:19
作者
Morancey, Morgan [1 ]
Nersesyan, Vahagn [2 ]
机构
[1] Ecole Polytech, CMLS UMR 7640, F-91128 Palaiseau, France
[2] Univ Versailles St Quentin Yvelines, UMR CNRS 8100, Math Lab, F-78035 Versailles, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 103卷 / 01期
关键词
Schrodinger equation; Simultaneous control; Global exact controllability; Return method; Lyapunov function; QUANTUM PARTICLE;
D O I
10.1016/j.matpur.2014.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of an arbitrary number of 1D linear Schrodinger equations on a bounded interval with bilinear control. We prove global exact controllability in large time of these N equations with a single control. This result is valid for an arbitrary potential with generic assumptions on the dipole moment of the considered particle. Thus, even in the case of a single particle, this result extends the available literature. The proof combines local exact controllability around finite sums of eigenstates, proved with Coron's return method, a global approximate controllability property, proved with Lyapunov strategy, and a compactness argument. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:228 / 254
页数:27
相关论文
共 25 条
[1]   CONTROLLABILITY FOR DISTRIBUTED BILINEAR-SYSTEMS [J].
BALL, JM ;
MARSDEN, JE ;
SLEMROD, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :575-597
[2]   Controllability of a quantum particle in a moving potential well [J].
Beauchard, K ;
Coron, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) :328-389
[3]   Local controllability of a 1-D Schrodinger equation [J].
Beauchard, K .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07) :851-956
[4]   Local controllability of 1D linear and nonlinear Schrodinger equations with bilinear control [J].
Beauchard, Karine ;
Laurent, Camille .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05) :520-554
[5]   PRACTICAL STABILIZATION OF A QUANTUM PARTICLE IN A ONE-DIMENSIONAL INFINITE SQUARE POTENTIAL WELL [J].
Beauchard, Karine ;
Mirrahimi, Mazyar .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :1179-1205
[6]   A Weak Spectral Condition for the Controllability of the Bilinear Schrodinger Equation with Application to the Control of a Rotating Planar Molecule [J].
Boscain, U. ;
Caponigro, M. ;
Chambrion, T. ;
Sigalotti, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (02) :423-455
[7]  
Boscain U., 2013, ARXIV13024173
[8]  
Boscain U., 2013, ARXIV13047181
[9]  
Boussaïd N, 2012, P AMER CONTR CONF, P5825
[10]   Controllability of the discrete-spectrum Schrodinger equation driven by an external field [J].
Chambrion, Thomas ;
Mason, Paolo ;
Sigalotti, Mario ;
Boscain, Ugo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :329-349