Growth and characterization of Dy1-xYxMnO3 single crystals by optical floating zone technique: A combined X-ray diffraction and DC magnetization study

被引:4
作者
Kumar, P. Aravinth [1 ]
Kumar, Arun [2 ]
Kumar, Keshav [2 ]
Singh, Pragya [2 ]
Babu, G. Anandha [1 ]
Vijayakumar, P. [3 ]
Ganesamoorthy, S. [3 ,4 ]
Ramasamy, P. [1 ]
Pandey, Dhananjai [2 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Dept Phys, Kalavakkam 603110, India
[2] Banaras Hindu Univ, Indian Inst Technol, Sch Mat Sci & Technol, Varanasi 221005, Uttar Pradesh, India
[3] Indira Gandhi Ctr Atom Res, Mat Sci Grp, Kalpakkam 603102, Tamil Nadu, India
[4] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
A1; Crystal structure; Phase diagram; A2; Floating zone technique; B1; Rare-earth compounds; B2; Magnetic materials; HEXAGONAL MANGANITES; FERROELECTRICITY; MULTIFERROICS; EVOLUTION; STORAGE; RMNO3;
D O I
10.1016/j.jcrysgro.2021.126152
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Large size single crystals of DyMnO3, YMnO3 and their solid solutions, Dy1-xYxMnO3, have been grown by the optical floating zone technique. It is shown that pristine DyMnO3 crystals grown in air atmosphere correspond to the orthorhombic phase in the Pnma space group symmetry while growth in the argon atmosphere leads to the hexagonal phase in the P63cm space group symmetry. The crystals grown in air atmosphere for the composition range 0.10 < x < 0.50 show coexistence of orthorhombic and hexagonal phases with increasing hexagonal phase fraction until at x - 0.60, the orthorhombic phase completely transforms to the hexagonal phase even in the air atmosphere. On the other hand, all the crystals grown in argon atmosphere correspond to the hexagonal phase only. Our Rietveld refinements using X-ray powder diffraction data on powders obtained after crushing the crystals further confirm the hexagonal structure in the P63cm space group symmetry for all crystals grown in argon atmosphere. The unit cell volume and the lattice parameters obtained by Rietveld refinement are shown to decrease with increasing Y3+ substitution at the Dy3+ site in DyMnO3. DC magnetisation measurements on h-Dy1xYxMnO3 single crystals reveal that Y3+ substitution marginally increases the antiferromagnetic ordering temperature (TN) from 67 K for h-DyMnO3 to 72 K for h-YMnO3. However, the first spin reorientation (SR) transition temperature (TSR1) of Mn3+ decreases with increasing Y3+ substitutions as per TSR1 - k(x-xc)0.3, where k is a proportionality constant and xc is the critical composition for which this transition temperature goes to 0 K. The remaining two magnetic transition temperatures related to Dy3+ reordering (rDy3+)/spin-glass transition (TSG) and second spin reorientation transition (TSR2) show very weak dependence on Y3+ substitution before going to 0 K around x = xc - 0.90 composition. A magnetic phase diagram of h-Dy1-xYxMnO3 showing stability field regions in respect of different magnetic phases is also presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Hexagonal RMnO3: a model system for two-dimensional triangular lattice antiferromagnets
    Sim, Hasung
    Oh, Joosung
    Jeong, Jaehong
    Manh Duc Le
    Park, Je-Geun
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2016, 72 : 3 - 19
  • [42] Magnetic structure of hexagonal YMnO3 and LuMnO3 from a microscopic point of view
    Solovyev, I. V.
    Valentyuk, M. V.
    Mazurenko, V. V.
    [J]. PHYSICAL REVIEW B, 2012, 86 (05):
  • [43] Advances in magnetoelectric multiferroics
    Spaldin, N. A.
    Ramesh, R.
    [J]. NATURE MATERIALS, 2019, 18 (03) : 203 - 212
  • [44] The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3
    Tomuta, DG
    Ramakrishnan, S
    Nieuwenhuys, GJ
    Mydosh, JA
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (20) : 4543 - 4552
  • [45] Neutron-scattering studies of magnetism in multiferroic HoMnO3 (invited)
    Vajk, O. P.
    Kenzelmann, M.
    Lynn, J. W.
    Kim, S. B.
    Cheong, S. -W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [46] Magnetic phase competition in Dy1-xYxMnO3
    Vajk, O. P.
    Wang, Y.
    Gunasekera, J.
    Tarwater, K.
    Heitmann, T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [47] The origin of ferroelectricity in magnetoelectric YMnO3
    Van Aken, BB
    Palstra, TTM
    Filippetti, A
    Spaldin, NA
    [J]. NATURE MATERIALS, 2004, 3 (03) : 164 - 170
  • [48] Structure and magnetism of Cr-doped h-YMnO3
    Wan, Feng
    Bai, Xiaojun
    Song, Kaikai
    Lin, Xin
    Han, Xuemei
    Zheng, Jianbang
    Cao, Chongde
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 424 : 371 - 375
  • [49] Incompatible magnetic order in multiferroic hexagonal DyMnO3
    Wehrenfennig, C.
    Meier, D.
    Lottermoser, Th.
    Lonkai, Th.
    Hoffmann, J-U
    Aliouane, N.
    Argyriou, D. N.
    Fiebig, M.
    [J]. PHYSICAL REVIEW B, 2010, 82 (10)
  • [50] Hexagonal versus perovskite phase of manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu)
    Zhou, J. -S.
    Goodenough, J. B.
    Gallardo-Amores, J. M.
    Moran, E.
    Alario-Franco, M. A.
    Caudillo, R.
    [J]. PHYSICAL REVIEW B, 2006, 74 (01)