Global Jacquet-Langlands Correspondence for Division Algebras in Characteristic p

被引:7
作者
Badulescu, Alexandru Ioan [1 ]
Roche, Philippe [2 ]
机构
[1] Univ Montpellier 2, I3M, Montpellier, France
[2] Univ Montpellier 2, CNRS, I3M, L2C, Montpellier, France
关键词
MULTIPLICITY ONE; GL(N); REPRESENTATIONS; THEOREM; CLASSIFICATION;
D O I
10.1093/imrn/rnw094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a full global Jacquet-Langlands correspondence between GL(n) and division algebras over global fields of non-zero characteristic. If D is a central division algebra of dimension n(2) over a global field F of non-zero characteristic, we prove that there exists an injective map from the set of automorphic representations of D-x to the set of automorphic square integrable representations of GL(n)(F), compatible at all places with the local Jacquet-Langlands correspondence for unitary representations. We characterize the image of the map. As a consequence we get multiplicity one and strong multiplicity one theorems for D-x.
引用
收藏
页码:2172 / 2206
页数:35
相关论文
共 37 条
[11]   TRACE PALEY-WIENER THEOREM FOR REDUCTIVE P-ADIC GROUPS [J].
BERNSTEIN, J ;
DELIGNE, P ;
KAZHDAN, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :180-192
[12]  
DeBacker Stephen, 1999, U LECT SERIES, V16
[13]  
Deligne P., 1984, Representations of Reductive Groups Over a Local Field, P33
[15]  
Flath D., 1979, Automorphic forms, representations and L-functions, VXXXIII, P179
[16]  
Harris M., 2001, ANN MATH STUD, V151, pviii
[17]   ON THE LOCAL LANGLANDS CONJECTURE FOR GL(N) - THE CYCLIC CASE [J].
HENNIART, G .
ANNALS OF MATHEMATICS, 1986, 123 (01) :145-203
[18]  
Jacquet H., 1970, Automorphic forms on GL(2), V114
[19]  
Lafforgue L, 2002, INVENT MATH, V147, P1, DOI 10.1007/s002220100174
[20]  
Lafforgue L, 1997, ASTERISQUE, P5