Global Jacquet-Langlands Correspondence for Division Algebras in Characteristic p

被引:7
作者
Badulescu, Alexandru Ioan [1 ]
Roche, Philippe [2 ]
机构
[1] Univ Montpellier 2, I3M, Montpellier, France
[2] Univ Montpellier 2, CNRS, I3M, L2C, Montpellier, France
关键词
MULTIPLICITY ONE; GL(N); REPRESENTATIONS; THEOREM; CLASSIFICATION;
D O I
10.1093/imrn/rnw094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a full global Jacquet-Langlands correspondence between GL(n) and division algebras over global fields of non-zero characteristic. If D is a central division algebra of dimension n(2) over a global field F of non-zero characteristic, we prove that there exists an injective map from the set of automorphic representations of D-x to the set of automorphic square integrable representations of GL(n)(F), compatible at all places with the local Jacquet-Langlands correspondence for unitary representations. We characterize the image of the map. As a consequence we get multiplicity one and strong multiplicity one theorems for D-x.
引用
收藏
页码:2172 / 2206
页数:35
相关论文
共 37 条
[1]  
ARTHUR J., 1988, J. Amer. Math. Soc., V1, P323, DOI [10.2307/1990920, DOI 10.2307/1990920]
[2]  
ARTHUR J., 1988, J. Amer. Math. Soc., V1, P501, DOI [10.2307/1990948, DOI 10.2307/1990948]
[3]  
ARTHUR J, 1989, ANN MATH STUDIES
[4]   TRACE FORMULA FOR REDUCTIVE GROUPS .1. TERMS ASSOCIATED TO CLASSES IN G(Q) [J].
ARTHUR, JG .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :911-952
[6]   SUR LE DUAL UNITAIRE DE GLr(D) [J].
Badulescu, A. I. ;
Henniart, G. ;
Lemaire, B. ;
Secherre, V. .
AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (05) :1365-1396
[7]   Unitary dual of GL(n) at archimedean places and global Jacquet-Langlands correspondence [J].
Badulescu, A. I. ;
Renard, D. .
COMPOSITIO MATHEMATICA, 2010, 146 (05) :1115-1164
[8]   A theorem of finitude [J].
Badulescu, AI ;
Broussous, P .
COMPOSITIO MATHEMATICA, 2002, 132 (02) :177-190
[9]  
Badulescu AI, 2000, MANUSCRIPTA MATH, V101, P49, DOI 10.1007/s002290050004
[10]   Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations [J].
Badulescu, Alexandru Ioan .
INVENTIONES MATHEMATICAE, 2008, 172 (02) :383-438