Engineering Solid Electrolyte Interface at Nano-Scale for High-Performance Hard Carbon in Sodium-Ion Batteries

被引:186
作者
Ma, Mengying [1 ,2 ]
Cai, Haoran [1 ]
Xu, Chenlu [1 ]
Huang, Renzhi [1 ]
Wang, Shurong [1 ,2 ]
Pan, Huilin [1 ,2 ]
Hu, Yong-Sheng [3 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Chinese Acad Sci, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Phys, Key Lab Renewable Energy,Beijing Key Lab New Ener, Beijing 100190, Peoples R China
关键词
hard carbon; pseudo‐ SEI; SEI chemistry; SEI structure; sodium ion batteries;
D O I
10.1002/adfm.202100278
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineering the structure and chemistry of solid electrolyte interface (SEI) on electrode materials is crucial for rechargeable batteries. Using hard carbon (HC) as a platform material, a correlation between Na+ storage performance, and the properties of SEI is comprehensively explored. It is found that a "good" SEI layer on HC may not be directly associated with certain kinds of SEI components, such as NaF and Na2O. Whereas, arranging nano SEI components with refined structures constructs the foundation of "good" SEI that enables fast Na+ storage and interface stability of HC in Na-ion batteries. A layer-by-layer SEI on HC with inorganic-rich inner layer and tolerant organic-rich outer flexible layer can facilitate excellent rate and cycling life. Besides, SEI layer as the gate for Na+ from electrolyte to HC electrode can modulate interfacial crystallographic structures of HC with pillar-solvent that function as "pseudo-SEI" for fast and stable Na+ storage in optimal 1 m NaPF6-TEGDME electrolytes. Such a layer-by-layer SEI combined with a "pseudo-SEI" layer for HC enables an outstanding rate of 192 mAh g(-1) at 2 C and stable cycling over 1100 cycles at 0.5 C. This study provides valuable guidance to improve the electrochemical performance of electrode materials through regulation of SEI in optimal electrolytes.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[3]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[4]   Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy [J].
Brouillette, D ;
Irish, DE ;
Taylor, NJ ;
Perron, G ;
Odziemkowski, M ;
Desnoyers, JE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (24) :6063-6071
[5]   Treasure Na-ion anode from trash coke by adept electrolyte selection [J].
Cabello, Marta ;
Chyrka, Taras ;
Klee, Rafael ;
Aragon, Maria J. ;
Bai, Xue ;
Lavela, Pedro ;
Vasylchenko, Gennadiy M. ;
Alcantara, Ricardo ;
Tirado, Jose L. ;
Ortiz, Gregorio F. .
JOURNAL OF POWER SOURCES, 2017, 347 :127-135
[6]   Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries [J].
Eshetu, Gebrekidan Gebresilassie ;
Diemant, Thomas ;
Hekmatfar, Maral ;
Grugeon, Sylvie ;
Behm, R. Juergen ;
Laruelle, Stephane ;
Armand, Michel ;
Passerini, Stefano .
NANO ENERGY, 2019, 55 :327-340
[7]   Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries [J].
Gachot, Gregory ;
Grugeon, Sylvie ;
Armand, Michel ;
Pilard, Serge ;
Guenot, Pierre ;
Tarascon, Jean-Marie ;
Laruelle, Stephane .
JOURNAL OF POWER SOURCES, 2008, 178 (01) :409-421
[8]   Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode [J].
Goktas, Mustafa ;
Bolli, Christoph ;
Buchheim, Johannes ;
Berg, Erik J. ;
Novak, Petr ;
Bonilla, Francisco ;
Rojo, Teofilo ;
Komaba, Shinichi ;
Kubota, Kei ;
Adelhelm, Philipp .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (36) :32844-32855
[9]   Raman study of tetraglyme-LiClO4 solvate structures [J].
Grondin, J ;
Lassègues, JC ;
Chami, M ;
Servant, L ;
Talaga, D ;
Henderson, WA .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (17) :4260-4267
[10]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614