On the existence in Gevrey classes of local solutions to the Cauchy problem for nonlinear hyperbolic systems with Holder continuous coefficients

被引:0
|
作者
Kajitani, Kunihiko [1 ]
Yuzawa, Yasuo [2 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 3158577, Japan
来源
ANNALI DELL'UNIVERSITA DI FERRARA SEZIONE VII, SCIENZE MATEMATICHE, VOL 52, NO 2 | 2006年 / 52卷 / 02期
关键词
nonlinear hyperbolic systems; Cauchy problem; Gevrey classes;
D O I
10.1007/s11565-006-0023-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall solve locally in time the solutions to the Cauchy problem for first order quasilinear hyperbolic systems of which coefficients of principal part and of lower order terms are mu- Holder and mu'- Holder continuous in time variable respectively and in Gevrey class of index s with respect to space variables under the assumption 1 <= s < min {1 + mu/v, 1 + 1-mu+mu'/v}, 0 < mu <= 1, where v denotes the maximal muliplicity of characteristics of systems.
引用
收藏
页码:303 / +
页数:2
相关论文
共 50 条