Limit cycles in discontinuous classical Lienard equations

被引:27
|
作者
Martins, Ricardo Miranda [1 ]
Mereu, Ana Cristina [2 ]
机构
[1] Univ Campinas UNICAMP, Inst Math Stat & Sci Comp, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Phys Chem & Math, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Limit cycles; Lienard systems; Averaging theory;
D O I
10.1016/j.nonrwa.2014.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed by nonlinear functions inside the class of all classical polynomial Lienard differential equations allowing discontinuities. In particular our results show that for any n >= 1 there are differential equations of the form (x) over dot+f (x)(x) over dot + x+sgn( (x) over dot)g(x) = 0, with f and g polynomials of degree n and 1 respectively, having [n/2] 1 limit cycles, where [.] denotes the integer part function. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [31] THE NUMBER OF SMALL-AMPLITUDE LIMIT-CYCLES OF LIENARD EQUATIONS
    BLOWS, TR
    LLOYD, NG
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAR) : 359 - 366
  • [32] On the existence and uniqueness of limit cycles in Lienard differential equations allowing discontinuities
    Llibre, Jaume
    Ponce, Enrique
    Torres, Francisco
    NONLINEARITY, 2008, 21 (09) : 2121 - 2142
  • [33] Classical Lienard equations of degree n ≥ 6 can have [n-1/2]+2 limit cycles
    De Maesschalck, P.
    Dumortier, F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) : 2162 - 2176
  • [34] On the hyperelliptic limit cycles of Lienard systems
    Liu, Changjian
    Chen, Guoting
    Yang, Jiazhong
    NONLINEARITY, 2012, 25 (06) : 1601 - 1611
  • [35] Limit cycles of generalized Lienard systems
    Bouattia, Y.
    Makhlouf, A.
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 60 - 70
  • [36] Number of limit cycles of the Lienard equation
    Giacomini, H
    Neukirch, S
    PHYSICAL REVIEW E, 1997, 56 (04): : 3809 - 3813
  • [37] LIMIT CYCLES IN A SWITCHING LIENARD SYSTEM
    Wang, Xiangyu
    Guo, Laigang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1503 - 1512
  • [38] The uniqueness of limit cycles for Lienard system
    Zhou, YR
    Wang, CW
    Blackmore, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (02) : 473 - 489
  • [39] Existence of limit cycles of Lienard equation
    Qingdao Daxue Xuebao(Gongcheng Jishuban)/Journal of Qingdao University (Engineering & Technology Edition), 1998, 13 (04): : 78 - 81
  • [40] Limit cycles of polynomial Lienard systems
    Phys Rev E., 4 (5185):