LOCAL WELL POSEDNESS FOR THE NONLOCAL NONLINEAR SCHRODINGER EQUATION BELOW THE ENERGY SPACE

被引:0
|
作者
de Moura, Roger Peres [1 ]
Pilod, Didier [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, CCN, BR-64049550 Teresina, PI, Brazil
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21945970 Rio De Janeiro, Brazil
关键词
MODELS; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish local well posedness for arbitrarily large initial data in the usual Sobolev spaces H-s (R), s > 1/2, for the Cauchy problem associated to the integro-differential equation partial derivative(t)u + i alpha partial derivative(2)(x)u = beta u (1 + iT(h)) partial derivative(x)(vertical bar u vertical bar(2)) + i gamma vertical bar u vertical bar(2)u, where u = u(x, t) is an element of C, x, t is an element of R, and T-h denotes the singular operator defined by T(h)f(x) = 1/2h p.v. integral(infinity)(-infinity) coth (pi(x-y)/2h) f(y)dy, when 0 < h <= infinity. Note that T-infinity = H is the Hilbert transform. Our method of proof relies on a gauge transformation localized in positive frequencies which allows us to weaken the high-low frequencies interaction in the nonlinearity.
引用
收藏
页码:925 / 952
页数:28
相关论文
共 50 条
  • [31] Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrodinger equation
    Gadzhimuradov, T. A.
    Agalarov, A. M.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [32] Inverse scattering for nonlocal reverse-space multicomponent nonlinear Schrodinger equations
    Ma, Wen-Xiu
    Huang, Yehui
    Wang, Fudong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (04):
  • [33] General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions
    Feng, Bao-Feng
    Luo, Xu-Dan
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    NONLINEARITY, 2018, 31 (12) : 5385 - 5409
  • [34] Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrodinger equation
    Wang, Minmin
    Chen, Yong
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2621 - 2638
  • [35] SOME LOCAL WELL POSEDNESS RESULTS IN WEIGHTED SOBOLEV SPACE H1/3 FOR THE 3-KDV EQUATION
    Castro, A. J.
    Zhapsarbayeva, L. K.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 120 (04): : 3 - 15
  • [36] Global well-posedness, scattering, and blowup for nonlinear coupled Schrodinger equations in R3
    Xu, Yushun
    APPLICABLE ANALYSIS, 2016, 95 (03) : 483 - 502
  • [37] LOCAL WELL-POSEDNESS AND A PRIORI BOUNDS FOR THE MODIFIED BENJAMIN-ONO EQUATION
    Guo, Zihua
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (11-12) : 1087 - 1137
  • [38] Local Cauchy theory for the nonlinear Schrodinger equation in spaces of infinite mass
    Correia, Simao
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (02): : 449 - 465
  • [39] The nonlocal Cahn-Hilliard equation with singular potential: Well-posedness, regularity and strict separation property
    Gal, Ciprian G.
    Giorgini, Andrea
    Grasselli, Maurizio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5253 - 5297
  • [40] Uniform local well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation
    Chen, Mingjuan
    Guo, Boling
    Han, Lijia
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) : 1553 - 1576