LOCAL WELL POSEDNESS FOR THE NONLOCAL NONLINEAR SCHRODINGER EQUATION BELOW THE ENERGY SPACE

被引:0
|
作者
de Moura, Roger Peres [1 ]
Pilod, Didier [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, CCN, BR-64049550 Teresina, PI, Brazil
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21945970 Rio De Janeiro, Brazil
关键词
MODELS; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish local well posedness for arbitrarily large initial data in the usual Sobolev spaces H-s (R), s > 1/2, for the Cauchy problem associated to the integro-differential equation partial derivative(t)u + i alpha partial derivative(2)(x)u = beta u (1 + iT(h)) partial derivative(x)(vertical bar u vertical bar(2)) + i gamma vertical bar u vertical bar(2)u, where u = u(x, t) is an element of C, x, t is an element of R, and T-h denotes the singular operator defined by T(h)f(x) = 1/2h p.v. integral(infinity)(-infinity) coth (pi(x-y)/2h) f(y)dy, when 0 < h <= infinity. Note that T-infinity = H is the Hilbert transform. Our method of proof relies on a gauge transformation localized in positive frequencies which allows us to weaken the high-low frequencies interaction in the nonlinearity.
引用
收藏
页码:925 / 952
页数:28
相关论文
共 50 条