We establish local well posedness for arbitrarily large initial data in the usual Sobolev spaces H-s (R), s > 1/2, for the Cauchy problem associated to the integro-differential equation partial derivative(t)u + i alpha partial derivative(2)(x)u = beta u (1 + iT(h)) partial derivative(x)(vertical bar u vertical bar(2)) + i gamma vertical bar u vertical bar(2)u, where u = u(x, t) is an element of C, x, t is an element of R, and T-h denotes the singular operator defined by T(h)f(x) = 1/2h p.v. integral(infinity)(-infinity) coth (pi(x-y)/2h) f(y)dy, when 0 < h <= infinity. Note that T-infinity = H is the Hilbert transform. Our method of proof relies on a gauge transformation localized in positive frequencies which allows us to weaken the high-low frequencies interaction in the nonlinearity.
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
Cui, Qiuhua
Tang, Xingdong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
Tang, Xingdong
Yu, Xiaoqing
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Beijing, Peoples R China
Beijing Normal Univ, POB 8009, Beijing 100088, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
机构:
Chonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Chonnam Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Cho, Yonggeun
Hwang, Gyeongha
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Hwang, Gyeongha
Ozawa, Tohru
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Dept Appl Phys, Tokyo 1698555, JapanChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea