LOCAL WELL POSEDNESS FOR THE NONLOCAL NONLINEAR SCHRODINGER EQUATION BELOW THE ENERGY SPACE

被引:0
|
作者
de Moura, Roger Peres [1 ]
Pilod, Didier [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, CCN, BR-64049550 Teresina, PI, Brazil
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21945970 Rio De Janeiro, Brazil
关键词
MODELS; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish local well posedness for arbitrarily large initial data in the usual Sobolev spaces H-s (R), s > 1/2, for the Cauchy problem associated to the integro-differential equation partial derivative(t)u + i alpha partial derivative(2)(x)u = beta u (1 + iT(h)) partial derivative(x)(vertical bar u vertical bar(2)) + i gamma vertical bar u vertical bar(2)u, where u = u(x, t) is an element of C, x, t is an element of R, and T-h denotes the singular operator defined by T(h)f(x) = 1/2h p.v. integral(infinity)(-infinity) coth (pi(x-y)/2h) f(y)dy, when 0 < h <= infinity. Note that T-infinity = H is the Hilbert transform. Our method of proof relies on a gauge transformation localized in positive frequencies which allows us to weaken the high-low frequencies interaction in the nonlinearity.
引用
收藏
页码:925 / 952
页数:28
相关论文
共 50 条
  • [1] Local well-posedness for the nonlocal derivative nonlinear Schrodinger equation in Besov spaces
    Barros, Vanessa
    de Moura, Roger
    Santos, Gleison
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 320 - 338
  • [2] GLOBAL WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER EQUATION WITH DERIVATIVE IN ENERGY SPACE
    Wu, Yifei
    ANALYSIS & PDE, 2013, 6 (08): : 1989 - 2002
  • [3] The global well-posedness for nonlinear Schrodinger equation with the delta potential in the energy space
    Cui, Qiuhua
    Tang, Xingdong
    Yu, Xiaoqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10234 - 10245
  • [4] On well posedness for the inhomogeneous nonlinear Schrodinger equation
    Guzman, Carlos M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 249 - 286
  • [5] Well-posedness for a generalized derivative nonlinear Schrodinger equation
    Hayashi, Masayuki
    Ozawa, Tohru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) : 5424 - 5445
  • [6] Well-posedness of the nonlinear Schrodinger equation on the half-plane
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    NONLINEARITY, 2020, 33 (10) : 5567 - 5609
  • [7] LOCAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH L2 -SUBCRITICAL DATA
    Guo, Shaoming
    Ren, Xianfeng
    Wang, Baoxiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (09) : 4207 - 4253
  • [8] THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION: GLOBAL WELL-POSEDNESS AND SOLITON RESOLUTION
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter
    Sulem, Catherine
    QUARTERLY OF APPLIED MATHEMATICS, 2020, 78 (01) : 33 - 73
  • [9] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [10] GLOBAL WELL-POSEDNESS OF CRITICAL NONLINEAR SCHRODINGER EQUATIONS BELOW L2
    Cho, Yonggeun
    Hwang, Gyeongha
    Ozawa, Tohru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1389 - 1405