Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery

被引:171
作者
Liu, Xu [1 ]
Zhang, Guangying [1 ]
Wang, Lei [1 ]
Fu, Honggang [1 ]
机构
[1] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ Peoples Republ China, Harbin 150080, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
active site; air cathode; bifunctional catalyst; oxygen evolution; oxygen reduction; zinc-air battery; METAL-ORGANIC FRAMEWORK; N-DOPED GRAPHENE; REDUCTION REACTION; DEPENDENT ACTIVITY; CATALYTIC-ACTIVITY; CARBON NANOSHEETS; ACTIVITY TRENDS; IONIC LIQUID; EVOLUTION; ENERGY;
D O I
10.1002/smll.202006766
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
引用
收藏
页数:19
相关论文
共 157 条
[1]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[2]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[3]  
Balandin A.A., 1969, Adv. Catal., V19, P1, DOI DOI 10.1016/S0360-0564(08)60029-2
[4]   Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction [J].
Bates, Michael K. ;
Jia, Qingying ;
Doan, Huong ;
Liang, Wentao ;
Mukerjee, Sanjeev .
ACS CATALYSIS, 2016, 6 (01) :155-161
[5]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[6]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[7]   Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions [J].
Calle-Vallejo, Federico ;
Ignacio Martinez, Jose ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15639-15643
[8]   Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations [J].
Chen, Jixin ;
Siegel, Jason B. ;
Matsuura, Toyoaki ;
Stefanopoulou, Anna G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :B1164-B1174
[9]   Phosphor and nitrogen co-doped rutile TiO2 covered on TiN for oxygen reduction reaction in acidic media [J].
Chisaka, Mitsuharu ;
Morioka, Hiroyuki .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (03) :611-619
[10]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303