Assimilation of ASCAT Sea Surface Wind Retrievals with Correlated Observation Errors

被引:2
作者
Duan, Boheng [1 ]
Zhang, Weimin [1 ,2 ]
Yang, Xiaofeng [3 ,4 ]
Zhu, Mengbin [5 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanol, Changsha 410073, Peoples R China
[2] Lab Software Engn Complex Syst, Changsha 410073, Peoples R China
[3] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Hainan Key Lab Earth Observat, Sanya 572029, Peoples R China
[5] Beijing Inst Appl Meteorol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
data assimilation; Advanced Scatterometer (ASCAT); wind components; correlated observation error; SCATTEROMETER DATA; WEATHER ANALYSIS; SYSTEM; IMPLEMENTATION; IMPACT;
D O I
10.1007/s13351-021-1007-0
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Data assimilation systems usually assume that the observation errors of wind components, i.e., u (the longitudinal component) and v (the latitudinal component), are uncorrelated. However, since wind components are derived from observations in the form of wind speed and direction (spd and dir), the observation errors of u and v are correlated. In this paper, an explicit expression of the observation errors and correlation for each pair of wind components are derived based on the law of error propagation. The new data assimilation scheme considering the correlated error of wind components is implemented in the Weather Research and Forecasting Data Assimilation (WRFDA) system. Besides, adaptive quality control (QC) is introduced to retain the information of high wind-speed observations. Results from real data experiments assimilating the Advanced Scatterometer (ASCAT) sea surface winds suggest that analyses from the new data assimilation scheme are more reasonable compared to those from the conventional one, and could improve the forecasting of Typhoon Noru.
引用
收藏
页码:478 / 489
页数:12
相关论文
共 32 条
[1]   THE DATA ASSIMILATION RESEARCH TESTBED A Community Facility [J].
Anderson, Jeffrey ;
Hoar, Tim ;
Raeder, Kevin ;
Liu, Hui ;
Collins, Nancy ;
Torn, Ryan ;
Avellano, Avelino .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2009, 90 (09) :1283-1296
[2]   The ECMWF implementation of three-dimensional variational assimilation (3D-Var). III: Experimental results [J].
Andersson, E ;
Haseler, J ;
Unden, P ;
Courtier, P ;
Kelly, G ;
Vasiljevic, D ;
Brankovic, C ;
Cardinali, C ;
Gaffard, C ;
Hollingsworth, A ;
Jakob, C ;
Janssen, P ;
Klinker, E ;
Lanzinger, A ;
Miller, M ;
Rabier, F ;
Simmons, A ;
Strauss, B ;
Thepaut, JN ;
Viterbo, P .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (550) :1831-1860
[3]  
Atlas R, 2000, ELSEV OCEANOGR SERIE, V63, P57
[4]  
Atlas R, 2001, B AM METEOROL SOC, V82, P1965, DOI 10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO
[5]  
2
[6]   THE WEATHER RESEARCH AND FORECASTING MODEL'S COMMUNITY VARIATIONAL/ENSEMBLE DATA ASSIMILATION SYSTEM WRFDA [J].
Barker, Dale ;
Huang, Xiang-Yu ;
Liu, Zhiquan ;
Auligne, Tom ;
Zhang, Xin ;
Rugg, Steven ;
Ajjaji, Raji ;
Bourgeois, Al ;
Bray, John ;
Chen, Yongsheng ;
Demirtas, Meral ;
Guo, Yong-Run ;
Henderson, Tom ;
Huang, Wei ;
Lin, Hui-Chuan ;
Michalakes, John ;
Rizvi, Syed ;
Zhang, Xiaoyan .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2012, 93 (06) :831-843
[7]  
Barker DM, 2004, MON WEATHER REV, V132, P897, DOI 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO
[8]  
2
[9]   Assessment of Assimilating ASCAT Surface Wind Retrievals in the NCEP Global Data Assimilation System [J].
Bi, Li ;
Jung, James A. ;
Morgan, Michael C. ;
Le Marshall, John F. .
MONTHLY WEATHER REVIEW, 2011, 139 (11) :3405-3421
[10]  
Bonavita M., 2017, INITIALIZATION TROPI, P39