Generalizations of the Lax-Milgram theorem

被引:4
作者
Drivaliaris, Dimosthenis
Yannakakis, Nikos
机构
[1] Univ Aegean, Dept Financial & Managmenet Engn, Chios 82100, Greece
[2] Natl Tech Univ Athens, Sch Appl Math & Nat Sci, Dept Math, Zografos 15780, Greece
来源
BOUNDARY VALUE PROBLEMS | 2007年
关键词
SPACES;
D O I
10.1155/2007/87104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In particular, we give sufficient conditions for a real-valued function defined on the product of a reflexive Banach space and a normed space to represent all bounded linear functionals of the latter. We also give two applications to singular differential equations. Copyright (c) 2007 D. Drivaliaris and N. Yannakakis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:9
相关论文
共 8 条
[1]   Lagrange multipliers for functions derivable along directions in a linear subspace [J].
An, LH ;
Du, PX ;
Duc, DM ;
Van Tuoc, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :595-604
[2]  
[Anonymous], GRADUATE TEXTS MATH
[3]  
[Anonymous], 1990, NONLINEAR FUNCTIONAL
[4]  
Banach S., 1932, THEORIE OPERATIONS L
[5]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[6]  
Dieudonne J., 1942, Ann. Sci. lEcole Norm. Superieure, V59, P107, DOI [10.24033/asens.895, DOI 10.24033/ASENS.895]
[7]   REPRESENTATION THEOREMS IN REFLEXIVE BANACH SPACES [J].
HAYDEN, TL .
MATHEMATISCHE ZEITSCHRIFT, 1968, 104 (05) :405-&
[8]   EXTENSION OF BILINEAR FUNCTIONALS [J].
HAYDEN, TL .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 22 (01) :99-&