Shifted convolution sums of GL(m) cusp forms with Θ-series

被引:0
作者
Hu, Guangwei [1 ]
Lu, Guangshi [2 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Fourier coefficients; Shifted convolution sums; Circle method;
D O I
10.1007/s11139-021-00447-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda(pi) (1, ..., 1, n) be the normalized Fourier coefficients of an even Hecke-Maass form pi for SL(m, Z) with m >= 3, and r(3)(n) = #{(n(1), n(2), n(3)) is an element of Z(3) : n = n(1)(2) + n(2)(2) + n(3)(2)}. In this paper, we introduce a refined version of the circle method to derive a sharp bound for the shifted convolution sum of GL(m) Fourier coefficients lambda(pi)(1, ..., 1, n) and r(3)(n), which improves previous results (even under the generalized Ramanujan conjecture).
引用
收藏
页码:555 / 584
页数:30
相关论文
共 18 条
  • [1] The Voronoi Formula for GL(n, R)
    Goldfeld, Dorian
    Li, Xiaoqing
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [2] THE FOURIER COEFFICIENTS OF Θ-SERIES IN ARITHMETIC PROGRESSIONS
    Hu, Guangwei
    Jiang, Yujiao
    Lu, Guangshi
    [J]. MATHEMATIKA, 2020, 66 (01) : 39 - 55
  • [3] Huxley M. N., 1996, Area, Lattice Points, and Exponential Sums, V13
  • [4] Iwaniec H., 1997, GRADUATE STUDIES MAT
  • [5] Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
  • [6] ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS .1.
    JACQUET, H
    SHALIKA, JA
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1981, 103 (03) : 499 - 558
  • [7] Shifted convolution sums for higher rank groups
    Jiang, Yujiao
    Lu, Guangshi
    [J]. FORUM MATHEMATICUM, 2019, 31 (02) : 361 - 383
  • [8] Functoriality for the exterior square of GL4 and the symmetric fourth of GL2
    Kim, HH
    Ramakrishnan, D
    Sarnak, P
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) : 139 - 183
  • [9] The Voronoi formula and double Dirichlet series
    Kiral, Eren Mehmet
    Zhou, Fan
    [J]. ALGEBRA & NUMBER THEORY, 2016, 10 (10) : 2267 - 2286
  • [10] LUO W., 1999, P S PURE MATH, V66, P301, DOI [10.1090/pspum/066.2/1703764, DOI 10.1090/PSPUM/066.2/1703764]