ON AN EXISTENCE THEORY FOR A FLUID-BEAM PROBLEM ENCOMPASSING POSSIBLE CONTACTS

被引:11
作者
Casanova, Jean-Jerome [1 ]
Grandmont, Celine [2 ,3 ]
Hillairet, Matthieu [4 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, UMR CNRS 7534, CEREMADE, Pl Marechal de Lattre de Tassigny, F-75775 Paris 16, France
[2] Inria Paris, F-75012 Paris, France
[3] Sorbonne Univ, UMR 7598, LJLL, F-75005 Paris, France
[4] Univ Montpellier, IMAG, CNRS, Montpellier, France
来源
JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES | 2021年 / 8卷
关键词
Incompressible Navier-Stokes equations; fluid-structure interactions; weak solutions; contact issue; WEAK SOLUTIONS; UNSTEADY INTERACTION; VISCOUS-FLUID;
D O I
10.5802/jep.162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a coupled system of pdes modeling the interaction between a two-dimensional incompressible viscous fluid and a one-dimensional elastic beam located on the upper part of the fluid domain boundary. We design a functional framework to define weak solutions in case of contact between the elastic beam and the bottom of the fluid cavity. We then prove that such solutions exist globally in time regardless a possible contact by approximating the beam equation by a damped beam and letting this additional viscosity vanish.
引用
收藏
页码:933 / 971
页数:39
相关论文
共 16 条
[1]   GEVREY REGULARITY FOR A SYSTEM COUPLING THE NAVIER-STOKES SYSTEM WITH A BEAM EQUATION [J].
Badra, Mehdi ;
Takahashi, Takeo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) :4776-4814
[2]   Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate [J].
Chambolle, A ;
Desjardins, B ;
Esteban, MJ ;
Grandmont, C .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :368-404
[3]   On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem [J].
da Veiga, H. Beirao .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2004, 6 (01) :21-52
[4]  
Fujita H., 1970, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V17, P403
[5]   EXISTENCE OF WEAK SOLUTIONS FOR THE UNSTEADY INTERACTION OF A VISCOUS FLUID WITH AN ELASTIC PLATE [J].
Grandmont, Celine .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :716-737
[6]   Existence of local strong solutions to fluid-beam and fluid-rod interaction systems [J].
Grandmont, Celine ;
Hillairet, Matthieu ;
Lequeurre, Julien .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (04) :1105-1149
[7]   Existence of Global Strong Solutions to a Beam-Fluid Interaction System [J].
Grandmont, Celine ;
Hillairet, Matthieu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (03) :1283-1333
[8]   BOUNDARY-VALUE-PROBLEMS FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS TREATED BY PSEUDODIFFERENTIAL METHODS [J].
GRUBB, G ;
SOLONNIKOV, VA .
MATHEMATICA SCANDINAVICA, 1991, 69 (02) :217-290
[9]   Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell [J].
Lengeler, Daniel ;
Ruzicka, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (01) :205-255
[10]   Existence of Strong Solutions for a System Coupling the Navier-Stokes Equations and a Damped Wave Equation [J].
Lequeurre, Julien .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (02) :249-271