Hypercyclic Semigroups Generated by Ornstein-Uhlenbeck Operators

被引:25
作者
Conejero, Jose A. [2 ]
Mangino, Elisabetta M. [1 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
关键词
Ornstein-Uhlenbeck operator; chaotic C-0-semigroups; hypercyclic C-0-semigroup; CHAOTIC C-0-SEMIGROUPS; STRUCTURED MODEL; BEHAVIOR; SIZE; SPACES;
D O I
10.1007/s00009-010-0030-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The chaotic and hypercyclic behavior of the C-0-semigroups of operators generated by a perturbation of the Ornstein-Uhlenbeck operator with a multiple of the identity in L-2(R-N) is investigated. Negative and positive results are presented, depending on the signs of the real parts of the eigenvalues of the matrix appearing in the drift of the operator.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 29 条
[1]  
Banasiak J, 2005, Z ANAL ANWEND, V24, P675
[2]   A generalization of Desch-Schappacher-Webb criteria for chaos [J].
Banasiak, J ;
Moszynski, M .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :959-972
[3]   Topological chaos: When topology meets medicine [J].
Banasiak, J ;
Lachowicz, M ;
Moszynski, M .
APPLIED MATHEMATICS LETTERS, 2003, 16 (03) :303-308
[4]   Chaos for a class of linear kinetic models [J].
Banasiak, J ;
Lachowicz, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (06) :439-444
[5]  
Banasiak J, 2008, DISCRETE CONT DYN-A, V20, P577
[6]  
BAYART F, 2007, SEMIGROUPS CHAOTIC O
[7]   Chaotic tensor product semigroups [J].
Bermúdez, T ;
Bonilla, A ;
Emamirad, H .
SEMIGROUP FORUM, 2005, 71 (02) :252-264
[8]   Chaotic behavior of the Riesz transforms for Hermite expansions [J].
Bermudez, Teresa ;
Bonilla, Antonio ;
Torrea, Jose L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :702-711
[9]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[10]   Hypercyclic behaviour of operators in a hypercyclic C0-semigroup [J].
Conejero, Jose A. ;
Muller, V. ;
Peris, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) :342-348