Optimization of 3D bioprinting of periodontal ligament cells

被引:77
作者
Raveendran, Nimal Thattaruparambil [1 ]
Vaquette, Cedryck [1 ]
Meinert, Christoph [2 ]
Ipe, Deepak Samuel [3 ]
Ivanovski, Saso [1 ]
机构
[1] Univ Queensland, Sch Dent, Brisbane, Qld 4006, Australia
[2] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Kelvin Grove, Qld 4059, Australia
[3] Griffith Univ, Sch Dent & Oral Hlth, Gold Coast, Qld 4215, Australia
关键词
3D bioprinting; Periodontal ligament cells; Gelatin methacryloyl; Cell viability; Periodontal tissue engineering; TISSUE-ENGINEERED CONSTRUCTS; GELATIN; BIOINK; BIOFABRICATION; FABRICATION; STRATEGIES; HYDROGELS;
D O I
10.1016/j.dental.2019.08.114
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Three-dimensional (3D) bioprinting of cells is an emerging area of research but has been not explored yet in the context of periodontal tissue engineering. Objective. This study reports on the optimisation of the 3D bioprinting of periodontal ligament cells for potential application in periodontal regeneration. Methods. We systematically investigated the printability of various concentrations of gelatin methacryloyl (GelMA) hydrogel precursor using a microextrusion based three-dimensional (3D) printer. The influence of different printing parameters such as photoinitiator concentration, UV exposure, pressure and dispensing needle diameter on the viability of periodontal ligament cells encapsulated within the 3D bioprinted construct were subsequently assessed. Results. This systematic evaluation enabled the selection of the most suited printing conditions for achieving high printing resolution, dimensional stability and cell viability for 3D bioprinting of periodontal ligament cells. Significance. The optimised bioprinting system is the first step towards to the reproducible manufacturing of cell laden, space maintaining scaffolds for the treatment of periodontal lesions. (C) 2019 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1683 / 1694
页数:12
相关论文
共 43 条
[11]   Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking [J].
Irvine, Scott A. ;
Agrawal, Animesh ;
Lee, Bae Hoon ;
Chua, Hui Yee ;
Low, Kok Yao ;
Lau, Boon Chong ;
Machluf, Marcelle ;
Venkatraman, Subbu .
BIOMEDICAL MICRODEVICES, 2015, 17 (01)
[12]   Multiphasic Scaffolds for Periodontal Tissue Engineering [J].
Ivanovski, S. ;
Vaquette, C. ;
Gronthos, S. ;
Hutmacher, D. W. ;
Bartold, P. M. .
JOURNAL OF DENTAL RESEARCH, 2014, 93 (12) :1212-1221
[13]   Strategies and Molecular Design Criteria for 3D Printable Hydrogels [J].
Jungst, Tomasz ;
Smolan, Willi ;
Schacht, Kristin ;
Scheibel, Thomas ;
Groll, Juergen .
CHEMICAL REVIEWS, 2016, 116 (03) :1496-1539
[14]   Additively manufactured biphasic construct loaded with BMP-2 for vertical bone regeneration: A pilot study in rabbit [J].
Kumar, Sudheesh P. T. ;
Hashimi, Saeed ;
Saifzadeh, Siamak ;
Ivanovski, Saso ;
Vaquette, Cedryck .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 92 :554-564
[15]   TISSUE ENGINEERING [J].
LANGER, R ;
VACANTI, JP .
SCIENCE, 1993, 260 (5110) :920-926
[16]   Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks [J].
Liu, Wanjun ;
Heinrich, Marcel A. ;
Zhou, Yixiao ;
Akpek, Ali ;
Hu, Ning ;
Liu, Xiao ;
Guan, Xiaofei ;
Zhong, Zhe ;
Jin, Xiangyu ;
Khademhosseini, Ali ;
Zhang, Yu Shrike .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (12)
[17]   Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms [J].
Loessner, Daniela ;
Meinert, Christoph ;
Kaemmerer, Elke ;
Martine, Laure C. ;
Yue, Kan ;
Levett, Peter A. ;
Klein, Travis J. ;
Melchels, Ferry P. W. ;
Khademhosseini, Ali ;
Hutmacher, Dietmar W. .
NATURE PROTOCOLS, 2016, 11 (04) :727-746
[18]   3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications [J].
Markstedt, Kajsa ;
Mantas, Athanasios ;
Tournier, Ivan ;
Avila, Hector Martinez ;
Hagg, Daniel ;
Gatenholm, Paul .
BIOMACROMOLECULES, 2015, 16 (05) :1489-1496
[19]  
Meinert C, 2018, METHODS MOL BIOL, V1786, P175, DOI 10.1007/978-1-4939-7845-8_10
[20]   Development and characterisation of a new bioink for additive tissue manufacturing [J].
Melchels, Ferry P. W. ;
Dhert, Wouter J. A. ;
Hutmacher, Dietmar W. ;
Malda, Jos .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (16) :2282-2289