Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time

被引:0
作者
Diks, Krzysztof [1 ]
Stanczyk, Piotr [1 ]
机构
[1] Univ Warsaw, Inst Informat, PL-02097 Warsaw, Poland
来源
SOFSEM 2010: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS | 2010年 / 5901卷
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O(n log(2) n). It is also possible, by applying randomized data structures, to get O(n log n log log(3) n) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O(n log(4) n). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are Ale to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.
引用
收藏
页码:321 / 333
页数:13
相关论文
共 18 条
  • [1] COMPUTING A MAXIMUM CARDINALITY MATCHING IN A BIPARTITE GRAPH IN TIME O(N1.5-SQUARE-ROOT-M/LOG N)
    ALT, H
    BLUM, N
    MEHLHORN, K
    PAUL, M
    [J]. INFORMATION PROCESSING LETTERS, 1991, 37 (04) : 237 - 240
  • [2] [Anonymous], 1983, Data structures and network algorithms
  • [3] Biedl T, 2001, SIAM PROC S, P825
  • [4] Efficient algorithms for Petersen's matching theorem
    Biedl, TC
    Bose, P
    Demaine, ED
    Lubiw, A
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 38 (01): : 110 - 134
  • [5] Frink O, 1926, ANN MATH, V27, P491
  • [6] Cubic graphs
    Greenlaw, R
    Petreschi, R
    [J]. ACM COMPUTING SURVEYS, 1995, 27 (04) : 471 - 495
  • [7] Harvey N. J. A., ALGEBRAIC ALGORITHMS
  • [8] Henzinger M.R., 1997, Fully dynamic 2-edge connectivity algorithm in polylogarithmic time per operation
  • [9] Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity
    Holm, J
    De Lichtenberg, K
    Thorup, M
    [J]. JOURNAL OF THE ACM, 2001, 48 (04) : 723 - 760
  • [10] Karpinski Marek., 1998, FAST PARALLEL ALGORI