Holographic entanglement entropy of surface defects

被引:11
作者
Gentle, Simon A. [1 ]
Gutperle, Michael [1 ]
Marasinou, Chrysostomos [1 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence; DUALITY; STRINGS;
D O I
10.1007/JHEP04(2016)067
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N = 4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.
引用
收藏
页数:36
相关论文
共 71 条
[1]   Holographic calculation of boundary entropy [J].
Azeyanagi, Tatsuo ;
Takayanagi, Tadashi ;
Karch, Andreas ;
Thompson, Ethan G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03)
[2]  
Belov D.M., HEPTH0611020
[3]   On chiral p-forms [J].
Bengtsson, I ;
Kleppe, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (19) :3397-3411
[4]   Operator product expansion for Wilson loops and surfaces in the large N limit -: art. no. 105023 [J].
Berenstein, D ;
Corrado, R ;
Fischler, W ;
Maldacena, J .
PHYSICAL REVIEW D, 1999, 59 (10) :1-10
[5]   Local actions with electric and magnetic sources [J].
Berkovits, N .
PHYSICS LETTERS B, 1997, 395 (1-2) :28-35
[6]   Manifest electromagnetic duality in closed superstring field theory [J].
Berkovits, N .
PHYSICS LETTERS B, 1996, 388 (04) :743-752
[7]  
Billo M., ARXIV160102883
[8]   CENTRAL CHARGES IN THE CANONICAL REALIZATION OF ASYMPTOTIC SYMMETRIES - AN EXAMPLE FROM 3-DIMENSIONAL GRAVITY [J].
BROWN, JD ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (02) :207-226
[9]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[10]   Towards a derivation of holographic entanglement entropy [J].
Casini, Horacio ;
Huerta, Marina ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05)