Multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge

被引:9
作者
Du, Zhijiang [1 ]
Yang, Miao [1 ]
Dong, Wei [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, 2 Yikuang St, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
BEAM ELEMENTS; DESIGN; EQUATIONS; MECHANISMS; PRECISION; SECTION;
D O I
10.5194/ms-7-127-2016
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Flexure hinges made of superelastic materials is a promising candidate to enhance the movability of compliant mechanisms. In this paper, we focus on the multi-objective optimization of a type of ellipse-parabola shaped superelastic flexure hinge. The objective is to determine a set of optimal geometric parameters that maximizes the motion range and the relative compliance of the flexure hinge and minimizes the relative rotation error during the deformation as well. Firstly, the paper presents a new type of ellipse-parabola shaped flexure hinge which is constructed by an ellipse arc and a parabola curve. Then, the static responses of superelastic flexure hinges are solved via non-prismatic beam elements derived by the co-rotational approach. Finite element analysis (FEA) and experiment tests are performed to verify the modeling method. Finally, a multi-objective optimization is performed and the Pareto frontier is found via the NSGA-II algorithm.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
[31]   Intelligent high-type control based on evolutionary multi-objective optimization [J].
Zhang, Hanwen ;
Liu, Qiong ;
Mao, Yao .
MEASUREMENT & CONTROL, 2024, 57 (01) :51-67
[32]   Multi-objective hydraulic optimization and analysis in a minipump [J].
Duan, Bin ;
Luo, Minqing ;
Yuan, Chao ;
Luo, Xiaobing .
SCIENCE BULLETIN, 2015, 60 (17) :1517-1526
[33]   An Algorithm for Multi-Objective Efficient Parametric Optimization [J].
Weaver-Rosen, Jonathan M. ;
Malak, Richard J. .
JOURNAL OF MECHANICAL DESIGN, 2023, 145 (03)
[34]   Pymoo: Multi-Objective Optimization in Python']Python [J].
Blank, Julian ;
Deb, Kalyanmoy .
IEEE ACCESS, 2020, 8 :89497-89509
[35]   A Hybrid Framework for Evolutionary Multi-objective Optimization [J].
Sindhya, Karthik ;
Miettinen, Kaisa ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) :495-511
[36]   A survey of recommender systems with multi-objective optimization [J].
Zheng, Yong ;
Wang, David .
NEUROCOMPUTING, 2022, 474 :141-153
[37]   Multi-objective Optimization in the selection of a CubeSat PayLoad [J].
Baran, Benjamin ;
Martinez, Bruno Ortiz ;
Baran, Michel .
2021 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE AND SIGNAL PROCESSING, INCAS, 2021,
[38]   Antenna Optimization Using Multi-Objective Algorithms [J].
Travassos, X. L. ;
Lima, M. M. B. ;
Vieira, D. A. G. ;
Lisboa, A. C. ;
Ida, N. .
PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2010,
[39]   Weighted preferences in evolutionary multi-objective optimization [J].
Friedrich, Tobias ;
Kroeger, Trent ;
Neumann, Frank .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) :139-148
[40]   Weighted Preferences in Evolutionary Multi-objective Optimization [J].
Friedrich, Tobias ;
Kroeger, Trent ;
Neumann, Frank .
AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 :291-+