Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra-Stable Anodes of Lithium-Metal Batteries

被引:204
作者
Yu, Baozhi [1 ,2 ]
Tao, Tao [1 ,2 ]
Mateti, Srikanth [2 ]
Lu, Shengguo [1 ]
Chen, Ying [2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Deakin Univ, Inst Frontier Mat, 75 Pigdons Rd, Waurn Ponds, Vic 3216, Australia
基金
澳大利亚研究理事会;
关键词
dendrites-free batteries; lithiophilic metal oxides; lithium affinity; lithium-metal anodes; lithium-metal batteries; CURRENT COLLECTOR; SULFUR BATTERIES; DEPOSITION; NETWORKS;
D O I
10.1002/adfm.201803023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A molten lithium infusion strategy has been proposed to prepare stable Li-metal anodes to overcome the serious issues associated with dendrite formation and infinite volume change during cycling of lithium-metal batteries. Stable host materials with superior wettability of molten Li are the prerequisite. Here, it is demonstrated that a series of strong oxidizing metal oxides, including MnO2, Co3O4, and SnO2, show superior lithiophilicity due to their high chemical reactivity with Li. Composite lithium-metal anodes fabricated via melt infusion of lithium into graphene foams decorated by these metal oxide nanoflake arrays successfully control the formation and growth of Li dendrites and alleviate volume change during cycling. A resulting Li-Mn/graphene composite anode demonstrates a super-long and stable lifetime for repeated Li plating/stripping of 800 cycles at 1 mA cm(-2) without voltage fluctuation, which is eight times longer than the normal lifespan of a bare Li foil under the same conditions. Furthermore, excellent rate capability and cyclability are realized in full-cell batteries with Li-Mn/graphene composite anodes and LiCoO2 cathodes. These results show a major advancement in developing a stable Li anode for lithium-metal batteries.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Flexible Ion-Conducting Composite Membranes for Lithium Batteries [J].
Aetukuri, Nagaphani B. ;
Kitajima, Shintaro ;
Jung, Edward ;
Thompson, Leslie E. ;
Virwani, Kumar ;
Reich, Maria-Louisa ;
Kunze, Miriam ;
Schneider, Meike ;
Schmidbauer, Wolfgang ;
Wilcke, Winfried W. ;
Bethune, Donald S. ;
Scott, J. Campbell ;
Miller, Robert D. ;
Kim, Ho-Cheol .
ADVANCED ENERGY MATERIALS, 2015, 5 (14)
[3]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[4]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[5]   BATTERIES A stable lithium metal interface [J].
Bouchet, Renaud .
NATURE NANOTECHNOLOGY, 2014, 9 (08) :572-573
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[7]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/nmat3001, 10.1038/NMAT3001]
[8]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[9]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[10]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099