JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of Reactive Force Fields

被引:1
作者
Aktulga, Hasan Metin [2 ]
Kaymak, Mehmet Cagri [2 ]
Rahnamoun, Ali [1 ,3 ]
O'Hearn, Kurt A. [2 ]
Merz Jr, Kenneth M.
van Duin, Adri C. T.
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[3] Penn State Univ, Dept Mech Engn, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; GLOBAL OPTIMIZATION; PARAMETERIZATION; ALGORITHMS; EFFICIENT;
D O I
10.1021/acs.jctc.2c003635181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reactive force field (ReaxFF) model bridges the gap between traditional classical models and quantum mechanical (QM) models by incorporating dynamic bonding and polar-izability. To achieve realistic simulations using ReaxFF, model parameters must be optimized against high fidelity training data which typically come from QM calculations. Existing parameter optimization methods for ReaxFF consist of black box techniques using genetic algorithms or Monte Carlo methods. Due to the stochastic behavior of these methods, the optimization process oftentimes requires millions of error evaluations for complex parameter fitting tasks, thereby significantly hampering the rapid development of high quality parameter sets. Rapid optimization of the parameters is essential for developing and refining Reax force fields because producing a force field which exhibits empirical accuracy in terms of dynamics typically requires multiple refinements to the training data as well as to the parameters under optimization. In this work, we present JAX-ReaxFF, a novel software tool that leverages modern machine learning infrastructure to enable fast optimization of ReaxFF parameters. By calculating gradients of the loss function using the JAX library, JAX-ReaxFF utilizes highly effective local optimization methods that are initiated from multiple guesses in the high dimensional optimization space to obtain high quality results. Leveraging the architectural portability of the JAX framework, JAX-ReaxFF can execute efficiently on multicore CPUs, graphics processing units (GPUs), or even tensor processing units (TPUs). As a result of using the gradient information and modern hardware accelerators, we are able to decrease ReaxFF parameter optimization time from days to mere minutes. Furthermore, the JAX-ReaxFF framework can also serve as a sandbox environment for domain scientists to explore customizing the ReaxFF functional form for more accurate modeling.
引用
收藏
页码:5181 / 5194
页数:14
相关论文
共 41 条
  • [1] Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
    Aktulga, H. M.
    Fogarty, J. C.
    Pandit, S. A.
    Grama, A. Y.
    [J]. PARALLEL COMPUTING, 2012, 38 (4-5) : 245 - 259
  • [2] REACTIVE MOLECULAR DYNAMICS: NUMERICAL METHODS AND ALGORITHMIC TECHNIQUES
    Aktulga, Hasan Metin
    Pandit, Sagar A.
    van Duin, Adri C. T.
    Grama, Ananth Y.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) : C1 - C23
  • [3] Bradbury J., 2018, JAX: Composable transformations of Python+NumPy programs
  • [4] A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
    Brenner, DW
    Shenderova, OA
    Harrison, JA
    Stuart, SJ
    Ni, B
    Sinnott, SB
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) : 783 - 802
  • [5] Case, 2022, AMBER 2022, DOI DOI 10.13140/RG.2.2.15902.66881
  • [6] Automated ReaxFF parametrization using machine learning
    Daksha, Chaitanya M.
    Yeon, Jejoon
    Chowdhury, Sanjib C.
    Gillespie, John W., Jr.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 187
  • [7] Efficient global optimization of reactive force-field parameters
    Dittner, Mark
    Mueller, Julian
    Aktulga, Hasan Metin
    Hartke, Bernd
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (20) : 1550 - 1561
  • [8] A reactive molecular dynamics simulation of the silica-water interface
    Fogarty, Joseph C.
    Aktulga, Hasan Metin
    Grama, Ananth Y.
    van Duin, Adri C. T.
    Pandit, Sagar A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (17)
  • [9] Frenkel D., 2002, Understanding molecular simulation: From algorithms to applications, V2nd ed., DOI DOI 10.1016/B978-012267351-1/50003-10889.65132
  • [10] A well-behaved theoretical framework for ReaxFF reactive force fields
    Furman, David
    Wales, David J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (02)