The horofunction boundary of finite-dimensional normed spaces

被引:27
作者
Walsh, Cormac [1 ]
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
关键词
D O I
10.1017/S0305004107000096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the set of Busemann points of an arbitrary finite-dimensional normed space. These are the points of the horofunction boundary that are the limits of "almost-geodesics". We prove that all points in the horofunction boundary are Busemann points if and only if the set of extreme sets of the dual unit ball is closed in the Painleve-Kuratowski topology.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 10 条
[1]  
AKIAN M, 2004, ARXIVMATHMG0412408
[2]  
ANDREEV PD, 2004, ARXIVMATHDG0405121
[3]  
[Anonymous], 2002, DOC MATH
[4]  
[Anonymous], 1969, RUSS MATH SURV+
[5]  
[Anonymous], 1993, MATH APPL
[6]  
GROMOV M, 1981, ANN MATH STUD, V97, P183
[7]   The Poisson boundary of the mapping class group [J].
Kaimanovich, VA ;
Masur, H .
INVENTIONES MATHEMATICAE, 1996, 125 (02) :221-264
[8]  
KARLSSON A, 2004, HOROBALLS SIMPLICES
[9]  
WEBSTER C, 2005, BUSEMANN POINTS METR
[10]  
WEBSTER C, 2006, ARXIVMATHMG0309291