UNIVERSAL TAYLOR SERIES, CONFORMAL MAPPINGS AND BOUNDARY BEHAVIOUR

被引:10
作者
Gardiner, Stephen J. [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
关键词
Universal Taylor series; conformal mappings; angular boundary behaviour;
D O I
10.5802/aif.2849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A holomorphic function f on a simply connected domain 12 is said to possess a universal Taylor series about a point in Omega if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta K outside 52 (provided only that K has connected complement). This paper shows that this property is not conformally invariant, and, in the case where Cl is the unit disc, that such functions have extreme angular boundary behaviour.
引用
收藏
页码:327 / 339
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1984, CLASSICAL POTENTIAL
[2]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[3]   Boundary behavior of universal Taylor series and their derivatives [J].
Armitage, DH ;
Costakis, G .
CONSTRUCTIVE APPROXIMATION, 2006, 24 (01) :1-15
[4]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[5]   Extensions of a theorem of Valiron [J].
Barth, Karl F. ;
Rippon, Philip J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :815-824
[6]  
Bayart F., 2006, REV MAT COMPLUT, V19, P235, DOI DOI 10.5209/rev_REMA.2006.v19.n1.16662
[7]  
Bernal-González L, 2009, REV MAT IBEROAM, V25, P757
[8]  
BRELOT M, 1963, ANN I FOURIER GRENOB, V13, P395
[9]   On the range of universal functions [J].
Costakis, G ;
Melas, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :458-464
[10]   On the radial behavior of universal Taylor series [J].
Costakis, G .
MONATSHEFTE FUR MATHEMATIK, 2005, 145 (01) :11-17