Endoprime modules and their direct sums

被引:5
作者
Lee, Gangyong [1 ]
Rizvi, S. Tariq [2 ]
机构
[1] Chungnam Natl Univ, Dept Math Educ, Daejeon 34134, South Korea
[2] Ohio State Univ, Dept Math, Lima, OH 45804 USA
基金
新加坡国家研究基金会;
关键词
Prime ring; endoprime module; F1-indecomposable module; semicentral reduced ring; column (and row) finite matrix ring; QUASI-BAER RINGS; PRIME MODULES;
D O I
10.1142/S0219498818501554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to further study the endoprime modules as one of the special classes of quasi-Baer modules. As a module theoretic analogue of a prime ring, we characterize an endoprime module via its endomorphism ring and a weak retractability condition. It is shown that any direct summand of an endoprime module is an endoprime module. A characterization is obtained when a direct sum of endoprime modules is an endoprime module. It is well known that every prime ring is semicentral reduced. We prove that a column (and row) finite matrix ring over a semicentral reduced ring is also a semicentral reduced ring. Consequently, it is shown that a column (and row) finite matrix ring over a prime ring is prime. Applications and examples illustrating our results are provided.
引用
收藏
页数:12
相关论文
共 15 条
[1]  
Birkenmeier G.F., 2013, EXTENSIONS RINGS MOD
[2]   TWISTED MATRIX UNITS SEMIGROUP ALGEBRAS [J].
CLARK, WE .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :417-&
[3]  
DAUNS J, 1978, J REINE ANGEW MATH, V298, P156
[4]   PRIME MODULES [J].
FELLER, EH ;
SWOKOWSKI, EW .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (06) :1041-+
[5]   Endoprime modules [J].
Haghany, A ;
Vedadi, MR .
ACTA MATHEMATICA HUNGARICA, 2005, 106 (1-2) :89-99
[6]   Modules whose Endomorphism Rings have Finite Triangulating Dimension and Some Applications [J].
Haghany, Ahmad ;
Gurabi, Mehdi ;
Vedadi, Mohammad Reza .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (03) :1171-1187
[7]   Quasi-Baer rings with essential prime radicals [J].
Jin, Hai Lan ;
Doh, Jaekyung ;
Park, Jae Keol .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) :3537-3541
[8]   Group Actions on Quasi-Baer Rings [J].
Jin, Hai Lan ;
Doh, Jaekyung ;
Park, Jae Keol .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (04) :564-582
[9]   Direct sums of quasi-Baer modules [J].
Lee, Gangyong ;
Rizvi, S. Tariq .
JOURNAL OF ALGEBRA, 2016, 456 :76-92
[10]   (Ω)under-tilde-RICKART MODULES [J].
Lee, Gangyong ;
Rizvi, S. Tariq ;
Roman, Cosmin S. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) :2124-2151