Learning Regular Languages via Alternating Automata

被引:0
作者
Angluin, Dana [1 ]
Eisenstat, Sarah [2 ]
Fisman, Dana [3 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Penn, Philadelphia, PA 19104 USA
来源
PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI) | 2015年
基金
美国国家科学基金会;
关键词
SETS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nearly all algorithms for learning an unknown regular language, in particular the popular L* algorithm, yield deterministic finite automata. It was recently shown that the ideas of L* can be extended to yield non-deterministic automata, and that the respective learning algorithm, NL*, outperforms L* on randomly generated regular expressions. We conjectured that this is due to the existential nature of regular expressions, and NL* might not outperform L* on languages with a universal nature. In this paper we introduce UL* - a learning algorithm for universal automata (the dual of non-deterministic automata); and AL* - a learning algorithm for alternating automata (which generalize both universal and non-deterministic automata). Our empirical results illustrate the advantages and trade-offs among L*, NL*, UL* and AL*.
引用
收藏
页码:3308 / 3314
页数:7
相关论文
共 29 条
  • [21] Accurate prediction of 11B NMR chemical shift of BODIPYs via machine learning
    Ksenofontov, Alexander A.
    Isaev, Yaroslav I.
    Lukanov, Michail M.
    Makarov, Dmitry M.
    Eventova, Varvara A.
    Khodov, Ilya A.
    Berezin, Mechail B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (13) : 9472 - 9481
  • [22] Learning Low-Dimensional Semantics for Music and Language via Multi-Subject fMRI
    Raposo, Francisco Afonso
    de Matos, David Martins
    Ribeiro, Ricardo
    NEUROINFORMATICS, 2022, 20 (02) : 451 - 461
  • [23] An Interval Type-2 Fuzzy Model of Computing with Words via Interval Type-2 Fuzzy Finite Rough Automata with Application in COVID-19 Deduction
    Yadav, Swati
    Tiwari, S. P.
    Kumari, Mausam
    Yadav, Vijay K.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2022, 18 (01) : 61 - 101
  • [24] Seismic predictions of fluids via supervised deep learning: Incorporating various class-rebalance strategies
    Gao, Shunli
    Xu, Minghui
    Zhao, Luanxiao
    Chen, Yuanyuan
    Geng, Jianhua
    GEOPHYSICS, 2023, 88 (04) : M185 - M200
  • [25] A probabilistic framework for multi-view feature learning with many-to-many associations via neural networks
    Okuno, Akifumi
    Hada, Tetsuya
    Shimodaira, Hidetoshi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [26] Selecting meta-heuristics for solving vehicle routing problems with time windows via meta-learning
    Gutierrez-Rodriguez, Andres E.
    Conant-Pablos, Santiago E.
    Ortiz-Bayliss, Jose C.
    Terashima-Marin, Hugo
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 118 : 470 - 481
  • [27] Label disambiguation-based feature selection for partial label learning via fuzzy dependency and feature discernibility
    Qian, Wenbin
    Ding, Jinfei
    Li, Yihui
    Huang, Jintao
    APPLIED SOFT COMPUTING, 2024, 161
  • [28] ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning
    Jia, Xiaoti
    Zhao, Pei
    Li, Fuyi
    Qin, Zhaohui
    Ren, Haoran
    Li, Junzhou
    Miao, Chunbo
    Zhao, Quanzhi
    Akutsu, Tatsuya
    Dou, Gensheng
    Chen, Zhen
    Song, Jiangning
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [29] Missing Shots and Near-Offset Reconstruction of Marine Seismic Data With Towered Streamers via Self-Supervised Deep Learning
    Wang, Benfeng
    Han, Dong
    Li, Jiakuo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60