RATIONAL O(2)-EQUIVARIANT SPECTRA

被引:9
作者
Barnes, David [1 ]
机构
[1] Queens Univ Belfast, Sch Math & Phys, Pure Math Res Ctr, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
equivariant spectrum; model category; right Bousfield localisation; ring spectrum; algebraic model; STABLE MODEL CATEGORIES; EQUIVARIANT SPECTRA; ADJUNCTIONS;
D O I
10.4310/HHA.2017.v19.n1.a12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The category of rational O(2)-equivariant cohomology theories has an algebraic model A(O(2)), as established by work of Greenlees. That is, there is an equivalence of categories between the homotopy category of rational O(2)-equivariant spectra and the derived category of the abelian model DA(O(2)). In this paper we lift this equivalence of homotopy categories to the level of Quillen equivalences of model categories. This Quillen equivalence is also compatible with the Adams short exact sequence of the algebraic model.
引用
收藏
页码:225 / 252
页数:28
相关论文
共 25 条
[1]   Splitting monoidal stable model categories [J].
Barnes, D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) :846-856
[2]  
Barnes D., 2008, ARXIV08020954V1MATHA
[3]  
Barnes D., 2008, ARXIV08043357V1
[4]  
Barnes D., 2009, HOMOL HOMOTOPY APPL, V11, P141
[5]   Rational SO(2)- equivariant spectra [J].
Barnes, David ;
Greenlees, J. P. C. ;
Kedziorek, Magdalena ;
Shipley, Brooke .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02) :983-1020
[7]   Operadic multiplications in equivariant spectra, norms, and transfers [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ADVANCES IN MATHEMATICS, 2015, 285 :658-708
[8]  
Elmendorf A. D., 1997, MATH SURVEYS MONOGR, V47
[9]   Rational torus-equivariant stable homotopy I: Calculating groups of stable maps [J].
Greenlees, J. P. C. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :72-98
[10]   Fixed point adjunctions for equivariant module spectra [J].
Greenlees, J. P. C. ;
Shipley, Brooke .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03) :1779-1799