Weighted inequalities for Hardy-Steklov operators

被引:6
作者
Bernardis, A. L.
Martin-Reyes, F. J.
Salvador, P. Ortega
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAL, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, E-29071 Malaga, Spain
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2007年 / 59卷 / 02期
关键词
Hardy-Steklov operator; weights; inequalities;
D O I
10.4153/CJM-2007-011-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the pairs of weights (v, w) for which the operator Tf (x) = g(x) integral(h(x))(s(x)) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < infinity. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon. In particular, we do not assume differentiabflity properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Phi(x) = sup [GRAPHICS] belongs to L-r(g(q)w), where 1/r = 1/q - 1/p and the supremum is taken over all c and d such that c <= x <= d and s(d) <= h(c).
引用
收藏
页码:276 / 295
页数:20
相关论文
共 50 条
  • [41] Weighted Hardy and Polya-Knopp inequalities with variable limits
    Nikolova, L.
    Persson, L-E.
    Ushakova, E.
    Wedestig, A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (03): : 547 - 557
  • [42] Weighted weak-type iterated and bilinear Hardy inequalities
    Garcia, V. Garcia
    Salvador, P. Ortega
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [43] CONDITIONS CHARACTERIZING THE HARDY AND REVERSE HARDY INEQUALITIES
    Kufner, A.
    Kuliev, K.
    Kulieva, G.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (04): : 693 - 700
  • [44] Weighted variable Morrey–Herz estimates for fractional Hardy operators
    Muhammad Asim
    Amjad Hussain
    Naqash Sarfraz
    Journal of Inequalities and Applications, 2022
  • [45] Reproducing Kernel Thesis of Hankel Operators on Weighted Hardy Spaces
    Colovic, Ana
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2025, 97 (02)
  • [46] Weighted anisotropic product Hardy spaces and boundedness of sublinear operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 392 - 442
  • [47] THE BOUNDEDNESS OF MULTIDIMENSIONAL HARDY OPERATORS IN WEIGHTED VARIABLE LEBESGUE SPACES
    Bandaliev, R. A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (03) : 249 - 259
  • [48] Commutators of weighted Hardy operators on Herz-type spaces
    Tang, Canqin
    Xue, Feien
    Zhou, Yu
    ANNALES POLONICI MATHEMATICI, 2011, 101 (03) : 267 - 273
  • [49] The boundedness of multidimensional hardy operators in weighted variable Lebesgue spaces
    R. A. Bandaliev
    Lithuanian Mathematical Journal, 2010, 50 : 249 - 259
  • [50] Linear operators on weighted Herz-type Hardy spaces
    陆善镇
    杨大春
    ChineseScienceBulletin, 1996, (07) : 545 - 548