A note on stochastic Burgers' system of equations

被引:4
作者
Twardowska, K
Zabczyk, J
机构
[1] Warsaw Univ Technol, Fac Math & Comp Sci, PL-00661 Warsaw, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
D O I
10.1081/SAP-200029505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic version of a system of two equations formulated by Burgers [Burgers, J.M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verh. Kon. Nerderl. Akad. Weten-Schappen Amsterdam, Afdeel Natuurkunde, 1939, 17 (2), 1-53] with the aim to describe the laminar and turbulent motions of a fluid in a channel. The existence and uniqueness theorem for a global solution is established.
引用
收藏
页码:1641 / 1670
页数:30
相关论文
共 26 条
  • [1] Adams R., 1975, Sobolev space
  • [2] [Anonymous], 1995, STOCH STOCH REP, DOI DOI 10.1080/17442509508833962
  • [3] Burgers J M., 1939, T ROY NETH ACAD SCI, V17, P1
  • [4] BURGERS TURBULENCE MODELS
    CASE, KM
    CHIU, SC
    [J]. PHYSICS OF FLUIDS, 1969, 12 (09) : 1799 - &
  • [5] KARHUNEN-LOEVE EXPANSION OF BURGERS MODEL OF TURBULENCE
    CHAMBERS, DH
    ADRIAN, RJ
    MOIN, P
    STEWART, DS
    SUNG, HJ
    [J]. PHYSICS OF FLUIDS, 1988, 31 (09) : 2573 - 2582
  • [6] Cholewa J.W., 2000, Global Attractors in Abstract Parabolic Problems
  • [7] CHUI H, 2000, CTR MANUSCRIPT, V131
  • [8] Control of the stochastic Burgers model of turbulence
    Da Prato, G
    Debussche, A
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1123 - 1149
  • [9] Da Prato G., 1987, Stochastics, V23, P1, DOI 10.1080/17442508708833480
  • [10] Da Prato G., 1994, NODEA-NONLINEAR DIFF, V1, P389