Generalized derivations of Lie triple systems

被引:14
作者
Zhou, Jia [1 ]
Chen, Liangyun [2 ]
Ma, Yao [3 ]
机构
[1] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
来源
OPEN MATHEMATICS | 2016年 / 14卷
基金
中国博士后科学基金;
关键词
Generalized derivations; Quasiderivations; Centroids; ALGEBRAS;
D O I
10.1515/math-2016-0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present some basic properties concerning the derivation algebra Der(T), the quasiderivation algebra QDer(T) and the generalized derivation algebra GDer(T) of a Lie triple system T, with the relationship Der(T) subset of QDer(T) subset of GDer(T) subset of End(T). Furthermore, we completely determine those Lie triple systems T with condition QDer(T) = End(T). We also show that the quasiderivations of T can be embedded as derivations in a larger Lie triple system.
引用
收藏
页码:260 / 271
页数:12
相关论文
共 19 条
  • [1] [Anonymous], OPERATOR THEORY ADV
  • [2] BENOIST Y, 1988, CR ACAD SCI I-MATH, V307, P901
  • [3] Generalized Derivations of Lie Color Algebras
    Chen, Liangyun
    Ma, Yao
    Ni, Lin
    [J]. RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 923 - 936
  • [4] Filippov V. T., 1998, SIB MAT ZH, V39, P1409
  • [5] Filippov V.T., 2000, RUSSIAN ALGEBRA LOG, V39, P618
  • [6] Hopkins N.C., 1996, NOVA J MATH GAME THE, V5, P215
  • [7] SOME STRUCTURE-THEORY FOR A CLASS OF TRIPLE-SYSTEMS
    HOPKINS, NC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) : 203 - 212
  • [8] LIE AND JORDAN TRIPLE SYSTEMS
    JACOBSON, N
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) : 149 - 170
  • [9] Ternary derivations of finite-dimensional real division algebras
    Jimenez-Gestal, Clara
    Perez-Izquierdo, Jose
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 2192 - 2219
  • [10] Kamiya N, 1997, P 7 INT C DIFF EQ PL, P189