Synthesis of Au-V2O5 composite nanowires through the shape transformation of a vanadium(iii) metal complex for high-performance solid-state supercapacitors

被引:26
作者
Rudra, Siddheswar [1 ]
Nayak, Arpan Kumar [2 ]
Chakraborty, Rishika [1 ]
Maji, Pradip K. [3 ]
Pradhan, Mukul [1 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Chem, Shillong 793003, Meghalaya, India
[2] Indian Inst Technol Kharagpur, Dept Mat Sci, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol Roorkee, Dept Polymer & Proc Engn, Saharanpur Campus, Saharanpur 247001, Uttar Pradesh, India
关键词
HIGH-ENERGY DENSITY; CARBON NANOTUBES; GRAPHENE SHEETS; ELECTRODES; STORAGE; NANOCOMPOSITES; ARCHITECTURE; GENERATION; NANOSHEETS; BATTERIES;
D O I
10.1039/c8qi00325d
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A simple redox transformation between a vanadium(iii) metal complex and gold(iii) chloride aided by a cost-effective modified hydrothermal procedure has been adopted for the synthesis of Au-V2O5 composite nanowires. The stability of pseudocapacitive electrode materials in acidic electrolytes is a major challenge. However, the synthesized Au-V2O5 composite nanowires are stable in acidic electrolyte when compared to the precursor component, V2O5. Electrochemical measurement shows a specific capacitance of 419 F g(-1) at 1 A g(-1) current density in 0.5 M H2SO4 solution for the synthesized composite nanowires. However, the precursor component V2O5 shows a lower specific capacitance under identical conditions. The synthesized composite nanowires, as a pseudocapacitive electrode material, respond to a wide range of working potential windows (+1.6 V), resulting in maximum energy and power densities of 53.33 W h kg(-1) and 3.85 kW kg(-1) respectively. Moreover, the Au-V2O5 nanowires show high cyclic stability (89% specific capacitance retention) for up to 5000 consecutive charge-discharge (CD) cycles at 10 A g(-1) constant current density, due to the composite formation by redox transformation, which reflects the stability of the composite in acidic electrolyte.
引用
收藏
页码:1836 / 1843
页数:8
相关论文
共 36 条
[1]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[2]   Graphene-inorganic nanocomposites [J].
Bai, Song ;
Shen, Xiaoping .
RSC ADVANCES, 2012, 2 (01) :64-98
[3]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[4]  
Conway B E, 1999, ELECTROCHEMICAL SUPE
[5]   Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability [J].
Guan, Cao ;
Liu, Jilei ;
Wang, Yadong ;
Mao, Lu ;
Fan, Zhanxi ;
Shen, Zexiang ;
Zhang, Hua ;
Wang, John .
ACS NANO, 2015, 9 (05) :5198-5207
[6]   Spray deposited amorphous RUO2 for an effective use in electrochemical supercapacitor [J].
Gujar, T. P. ;
Shinde, V. R. ;
Lokhande, C. D. ;
Kim, Woo-Young ;
Jung, Kwang-Deog ;
Joo, Oh-Shim .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :504-510
[7]   Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J].
Hu, Chi-Chang ;
Chang, Kuo-Hsin ;
Lin, Ming-Champ ;
Wu, Yung-Tai .
NANO LETTERS, 2006, 6 (12) :2690-2695
[8]   An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte [J].
Huang, Yan ;
Zhong, Ming ;
Shi, Fukuan ;
Liu, Xiaoying ;
Tang, Zijie ;
Wang, Yukun ;
Huang, Yang ;
Hou, Haoqing ;
Xie, Xuming ;
Zhi, Chunyi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (31) :9141-9145
[9]   Nanomaterials for lithium ion batteries [J].
Jiang, Chunhai ;
Hosono, Eiji ;
Zhou, Haoshen .
NANO TODAY, 2006, 1 (04) :28-33
[10]   DNA Aided Formation of Aggregated Nb2O5 Nanoassemblies as Anode Material for Dye Sensitized Solar Cell (DSSC) and Supercapacitor Applications [J].
Karthick, K. ;
Nithiyanantham, U. ;
Ede, S. R. ;
Kundu, Subrata .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (06) :3174-3188