Interaction between trichosanthin, a ribosome inactivating protein, and the ribosomal stalk protein P2 by chemical shift perturbation and mutagenesis analyses

被引:65
作者
Chan, Denise S. B.
Chu, Lai-On
Lee, Ka-Ming
Too, Priscilla H. M.
Ma, Kit-Wan
Sze, Kong-Hung
Zhu, Guang
Shaw, Pang-Chui
Wong, Kam-Bo [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Biochem, Ctr Prot Sci & Crystallog, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Biochem, Mol Biotechnol Programme, Shatin, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Biochem, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1093/nar/gkm065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inactivates ribosome by enzymatically depurinating the A(4324) at the alpha-sarcin/ricin loop of 28S rRNA. We have shown in this and previous studies that TCS interacts with human acidic ribosomal proteins P0, P1 and P2, which constitute the lateral stalk of eukaryotic ribosome. Deletion mutagenesis showed that TCS interacts with the C-terminal tail of P2, the sequences of which are conserved in PO, P1 and P2. The P2-binding site on TCS was mapped to the C-terminal domain by chemical shift perturbation experiments. Scanning charge-to-alanine mutagenesis has shown that K173, R174 and K177 in the C-terminal domain of TCS are involved in interacting with the P2, presumably through forming charge-charge interactions to the conserved DDD motif at the C-terminal tail of P2. A triple-alanine variant K173A/R174A/ K177A of TCS, which fails to bind P2 and ribosomal stalk in vitro, was found to be 18-fold less active in inhibiting translation in rabbit reticulocyte lysate, suggesting that interaction with P-proteins is required for full activity of TCS. In an analogy to the role of stalk proteins in binding elongation factors, we propose that interaction with acidic ribosomal stalk proteins help TCS to locate its RNA substrate.
引用
收藏
页码:1660 / 1672
页数:13
相关论文
共 45 条
[1]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[2]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[3]   SENSITIVITY-ENHANCED TWO-DIMENSIONAL HETERONUCLEAR SHIFT CORRELATION NMR-SPECTROSCOPY [J].
BAX, A ;
SUBRAMANIAN, S .
JOURNAL OF MAGNETIC RESONANCE, 1986, 67 (03) :565-569
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]   Trichosanthin interacts with acidic ribosomal proteins P0 and P1 and mitotic checkpoint protein MAD2B [J].
Chan, SH ;
Hung, FSJ ;
Chan, DSB ;
Shaw, PC .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (07) :2107-2112
[6]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[7]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[8]  
DeLano W. L., 2002, PYMOL
[9]   Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation [J].
Diaconu, M ;
Kothe, U ;
Schlünzen, F ;
Fischer, N ;
Harms, JM ;
Tonevitsky, AG ;
Stark, H ;
Rodnina, MV ;
Wahl, MC .
CELL, 2005, 121 (07) :991-1004
[10]  
ENDO Y, 1988, J BIOL CHEM, V263, P8735