Positive solutions for infinite semipositone problems with falling zeros

被引:17
|
作者
Lee, Eun Kyoung [1 ]
Shivaji, R. [1 ]
Ye, Jinglong
机构
[1] Mississippi State Univ, Dept Math & Stat, Ctr Computat Sci, Mississippi State, MS 39762 USA
关键词
Infinite semipositone; Falling zero; Sub-supersolutions; CONCAVE NONLINEARITIES; NONNEGATIVE SOLUTIONS; ELLIPTIC-EQUATIONS; SOLUTION CURVES; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.na.2010.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the positive solutions to the singular problem {-Delta u = au - f(u) -c/u(alpha) in Omega u = 0 on partial derivative Omega where 0 < alpha < 1; a > 0 and c > 0 are constants, Omega is a bounded domain with smooth boundary and f : [0, infinity) -> R is a continuous function. We assume that there exist M > 0; A > 0; p > 1 such that au - M <= f(u) <= Au(p); for all u is an element of [0, infinity). A simple example of f satisfying these assumptions is f(u) = u(p) for any p > 1. We use the method of sub-supersolutions to prove the existence of a positive solution of (P) when a > 2 lambda(1)/1+alpha and c is small. Here lambda(1) is the first eigenvalue of operator - Lambda with Dirichlet boundary conditions. We also extend our result to classes of infinite semipositone systems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4475 / 4479
页数:5
相关论文
共 50 条
  • [1] Semipositone problems with falling zeros on exterior domains
    Sankar, Lakshmi
    Sasi, Sarath
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 146 - 153
  • [2] POSITIVE SOLUTIONS FOR INFINITE SEMIPOSITONE PROBLEMS ON EXTERIOR DOMAINS
    Lee, Eun Kyoung
    Sankar, Lakshmi
    Shivaji, R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (9-10) : 861 - 875
  • [3] On positive solutions for a class of infinite semipositone problems
    Ghaemi, M. B.
    Choubin, M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2013, 4 (01): : 49 - 54
  • [4] ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS
    Rasouli, S. H.
    Ghaemi, M. B.
    Afrouzi, G. A.
    Choubin, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 27 - 34
  • [5] Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 510 - 525
  • [6] UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2059 - 2067
  • [7] Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball
    Ko, Eunkyung
    Ramaswamy, Mythily
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 399 - 409
  • [8] Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball
    Dhanya, R.
    Morris, Q.
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1533 - 1548
  • [9] Positive solutions for singular semipositone boundary value problems on infinite intervals
    Wang, Ying
    Liu, Lishan
    Wu, Yonghong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 256 - 273
  • [10] Positive solutions to classes of infinite semipositone (p, q)-Laplace problems with nonlinear boundary conditions
    Sim, Inbo
    Son, Byungjae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)