Robust centre location in radial basis function networks

被引:0
作者
Pillati, M [1 ]
Calò, DG [1 ]
机构
[1] Univ Bologna, Dipartimento Sci Stat, I-40126 Bologna, Italy
来源
ADVANCES IN MULTIVARIATE DATA ANALYSIS | 2004年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most important and broadly accepted solutions for the centre selection problem in radial basis function networks is due to Moody and Darken (1989), who propose to cluster the input vectors via the k-means clustering method. In this paper, an alternative robust solution, based on the spatial median, is proposed and compared also to the k-medoids method (Kaufman and Rousseeuw, 1990). Some simulation studies in the context of classification problems show that, when outlying data are present, the solution we propose improves the network performance and allows to define a more parsimonious network.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [41] Multi-layer radial basis function networks. An extension to the radial basis function.
    Craddock, RJ
    Warwick, K
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 700 - 705
  • [42] Radial Basis Function Cascade Correlation Networks
    Lu, Weiying
    Harrington, Peter de B.
    ALGORITHMS, 2009, 2 (03) : 1045 - 1068
  • [43] Adaptive radial basis function emulators for robust design
    Bates, RA
    Wynn, HP
    EVOLUTIONARY DESIGN AND MANUFACTURE, 2000, : 343 - 350
  • [44] An Incremental Design of Radial Basis Function Networks
    Yu, Hao
    Reiner, Philip D.
    Xie, Tiantian
    Bartczak, Tomasz
    Wilamowski, Bogdan M.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (10) : 1793 - 1803
  • [45] Radial Basis Function Networks with quantized parameters
    Lucks, Marcio B.
    Oki, Nobuo
    2008 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2008, : 23 - 27
  • [46] CMOS implementation for radial basis function networks
    Liang, Yan
    Jin, Dongming
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2008, 29 (02): : 387 - 392
  • [47] Monotonicity conditions for radial basis function networks
    Husek, Petr
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 168 - 173
  • [48] Generalized multiscale radial basis function networks
    Billings, Stephen A.
    Wei, Hua-Liang
    Balikhin, Michael A.
    NEURAL NETWORKS, 2007, 20 (10) : 1081 - 1094
  • [49] Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
    Aggelogiannaki, Eleni
    Sarimveis, Haralambos
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 15, 2006, 15 : 261 - 267
  • [50] Robust adaptive control of nonaffine nonlinear systems using radial basis function neural networks
    Karimi, B.
    Menhaj, M. B.
    Saboori, I.
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 270 - +