Robust centre location in radial basis function networks

被引:0
|
作者
Pillati, M [1 ]
Calò, DG [1 ]
机构
[1] Univ Bologna, Dipartimento Sci Stat, I-40126 Bologna, Italy
来源
ADVANCES IN MULTIVARIATE DATA ANALYSIS | 2004年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most important and broadly accepted solutions for the centre selection problem in radial basis function networks is due to Moody and Darken (1989), who propose to cluster the input vectors via the k-means clustering method. In this paper, an alternative robust solution, based on the spatial median, is proposed and compared also to the k-medoids method (Kaufman and Rousseeuw, 1990). Some simulation studies in the context of classification problems show that, when outlying data are present, the solution we propose improves the network performance and allows to define a more parsimonious network.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [21] Robust full Bayesian learning for radial basis networks
    Andrieu, C
    de Freitas, N
    Doucet, A
    NEURAL COMPUTATION, 2001, 13 (10) : 2359 - 2407
  • [22] Comparative study between radial basis probabilistic neural networks and radial basis function neural networks
    Zhao, WB
    Huang, DS
    Guo, L
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 389 - 396
  • [23] Generalization Performance of Radial Basis Function Networks
    Lei, Yunwen
    Ding, Lixin
    Zhang, Wensheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (03) : 551 - 564
  • [24] Online learning in radial basis function networks
    Freeman, JAS
    Saad, D
    NEURAL COMPUTATION, 1997, 9 (07) : 1601 - 1622
  • [25] Monotonic Normalized Radial Basis Function Networks
    Husek, Petr
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 3118 - 3123
  • [26] Normalized Gaussian radial basis function networks
    Bugmann, G
    NEUROCOMPUTING, 1998, 20 (1-3) : 97 - 110
  • [27] Radial Basis Function Networks with quantized parameters
    Lucks, Marcio B.
    Oki, Nobuo
    2008 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2008, : 23 - 27
  • [28] Monotonicity conditions for radial basis function networks
    Husek, Petr
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 168 - 173
  • [29] Generalized multiscale radial basis function networks
    Billings, Stephen A.
    Wei, Hua-Liang
    Balikhin, Michael A.
    NEURAL NETWORKS, 2007, 20 (10) : 1081 - 1094
  • [30] CMOS implementation for radial basis function networks
    Liang, Yan
    Jin, Dongming
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2008, 29 (02): : 387 - 392