Quantum dynamics simulations beyond the coherence time on noisy intermediate-scale quantum hardware by variational Trotter compression

被引:29
作者
Berthusen, Noah F. [1 ,2 ,4 ]
Trevisan, Thais, V [1 ,3 ]
Iadecola, Thomas [1 ,3 ]
Orth, Peter P. [1 ,3 ]
机构
[1] Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[4] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
Arbitrary time - Classical optimization - Coherence time - Cost-function - Dynamics simulation - Heisenberg models - Quantum dynamics simulation - Quantum-classical - Step size - Variational form;
D O I
10.1103/PhysRevResearch.4.023097
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a postquench dynamics simulation of a Heisenberg model on present-day IBM quantum hardware that extends beyond the coherence time of the device. This is achieved using a hybrid quantum-classical algorithm that propagates a state using Trotter evolution and then performs a classical optimization that effectively compresses the time-evolved state into a variational form. When iterated, this procedure enables simulations to arbitrary times with an error controlled by the compression fidelity and a fixed Trotter step size. We show how to measure the required cost function, the overlap between the time-evolved and variational states, on present-day hardware, making use of several error mitigation methods. In addition to carrying out simulations on real hardware, we investigate the performance and scaling behavior of the algorithm with noiseless and noisy classical simulations. We find the main bottleneck in going to larger system sizes to be the difficulty of carrying out the optimization of the noisy cost function.
引用
收藏
页数:12
相关论文
共 61 条
[1]  
Aleksandrowicz Gadi, 2019, Zenodo, DOI 10.5281/ZENODO.2562111
[2]   Fast-forwarding of Hamiltonians and exponentially precise measurements [J].
Atia, Yosi ;
Aharonov, Dorit .
NATURE COMMUNICATIONS, 2017, 8
[3]   Parallel quantum simulation of large systems on small NISQ computers [J].
Barratt, F. ;
Dborin, James ;
Bal, Matthias ;
Stojevic, Vid ;
Pollmann, Frank ;
Green, A. G. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[4]  
Bassman L., 2022, MAT THEORY, V6, P13
[5]   Hardware-efficient variational quantum algorithms for time evolution [J].
Benedetti, Marcello ;
Fiorentini, Mattia ;
Lubasch, Michael .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[6]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[7]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[8]  
Berthusen N., 2022, **DATA OBJECT**
[9]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[10]   Reinforcement Learning for Digital Quantum Simulation [J].
Bolens, Adrien ;
Heyl, Markus .
PHYSICAL REVIEW LETTERS, 2021, 127 (11)