A hybrid iteration for asymptotically strictly pseudocontractive mappings

被引:5
作者
Dewangan, Rajshree [1 ]
Thakur, Balwant Singh [1 ]
Postolache, Mihai [2 ]
机构
[1] Pt Ravishankar Shukla Univ, Sch Studies Math, Raipur 492010, CG, India
[2] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
关键词
asymptotically strictly pseudocontractive mappings; Mann iteration; shrinking projection method; CQ-iteration; strong convergence; STRONG-CONVERGENCE THEOREMS; PSEUDO-CONTRACTIONS; HILBERT-SPACES; NONEXPANSIVE-MAPPINGS;
D O I
10.1186/1029-242X-2014-374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new hybrid iteration for a finite family of asymptotically strictly pseudocontractive mappings. We also prove that such a sequence converges strongly to a common fixed point of a finite family of asymptotically strictly pseudocontractive mappings. Results in the paper extend and improve recent results in the literature.
引用
收藏
页数:11
相关论文
共 14 条
[1]  
Acedo GL, 2009, NONLINEAR ANAL, V70, P1902
[2]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[3]   Strong convergence theorems by hybrid method for asymptotically k-strict pseudo-contractive mapping in Hilbert space [J].
Inchan, Issara ;
Nammanee, Kamonrat .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (04) :380-385
[4]   Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions [J].
Kim, Tae-Hwa ;
Xu, Hong-Kun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2828-2836
[5]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[6]   Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces [J].
Marino, Giuseppe ;
Xu, Hong-Kun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :336-346
[7]   Strong convergence of the CQ method for fixed point iteration processes [J].
Martinez-Yanes, C ;
Xu, HK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (11) :2400-2411
[8]   Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J].
Nakajo, K ;
Takahashi, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :372-379
[9]  
Qihou L, 1996, NONLINEAR ANAL, V26, P1835, DOI DOI 10.1016/0362-546X(94)00351-H
[10]   A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces [J].
Qin, Xiaolong ;
Cho, Yeol Je ;
Kang, Shin Min ;
Shang, Meijuan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (05) :1902-1911