Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells

被引:76
作者
Foudah, Dana [1 ]
Redaelli, Serena [1 ]
Donzelli, Elisabetta [1 ]
Bentivegna, Angela [1 ]
Miloso, Mariarosaria [1 ]
Dalpra, Leda [1 ,2 ]
Tredici, Giovanni [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Neurosci & Tecnol Biomed, I-20052 Monza, Italy
[2] Osped San Gerardo, US Genet Med, I-20052 Monza, Italy
关键词
Cytogenetic analysis; rat mesenchymal stem cells; chromosomal status; genomic stability; in vitro culture conditions; MSCs differentiation capacity; N-MYC; THERAPEUTIC APPLICATIONS; GENE-EXPRESSION; SERUM-FREE; TRANSFORMATION; AMPLIFICATION; EXPANSION; DIFFERENTIATION; EFFICIENT; MURINE;
D O I
10.1007/s10577-009-9090-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs.
引用
收藏
页码:1025 / 1039
页数:15
相关论文
共 38 条
[1]   The Use of Mesenchymal (Skeletal) Stem Cells for Treatment of Degenerative Diseases: Current Status and Future Perspectives [J].
Abdallah, Basem M. ;
Kassem, Moustapha .
JOURNAL OF CELLULAR PHYSIOLOGY, 2009, 218 (01) :9-12
[2]   Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, Zoo-FISH, and allelotyping [J].
Adamovic, T ;
Trossö, F ;
Roshani, L ;
Andersson, L ;
Petersen, G ;
Rajaei, S ;
Helou, K ;
Levan, G .
GENES CHROMOSOMES & CANCER, 2005, 44 (02) :139-153
[3]   Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung [J].
Aguilar, Susana ;
Nye, Emma ;
Chan, Jerry ;
Loebinger, Michael ;
Spencer-Dene, Bradley ;
Fisk, Nick ;
Stamp, Gordon ;
Bonnet, Dominique ;
Janes, Sam M. .
STEM CELLS, 2007, 25 (06) :1586-1594
[4]   Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term In vitro culture and do not exhibit telomere maintenance mechanisms [J].
Bernardo, Maria Ester ;
Zaffaroni, Nadia ;
Novara, Francesca ;
Cometa, Angela Maria ;
Avanzini, Maria Antonietta ;
Moretta, Antonia ;
Montagna, Daniela ;
Maccario, Rita ;
Villa, Raffaella ;
Daidone, Maria Grazia ;
Zuffardi, Orsetta ;
Locatelli, Franco .
CANCER RESEARCH, 2007, 67 (19) :9142-9149
[5]   AMPLIFICATION OF N-MYC IN UNTREATED HUMAN NEUROBLASTOMAS CORRELATES WITH ADVANCED DISEASE STAGE [J].
BRODEUR, GM ;
SEEGER, RC ;
SCHWAB, M ;
VARMUS, HE ;
BISHOP, JM .
SCIENCE, 1984, 224 (4653) :1121-1124
[6]   Therapeutic applications of mesenchymal stromal cells [J].
Brooke, Gary ;
Cooka, Matthew ;
Blair, Chris ;
Han, Rachel ;
Heazlewood, Celena ;
Jones, Ben ;
Kambouris, Melinda ;
Kollar, Kate ;
McTaggart, Steven ;
Pelekanos, Rebecca ;
Rice, Alison ;
Rossetti, Tony ;
Atkinson, Kerry .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2007, 18 (06) :846-858
[7]   Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J].
Caplan, Arnold I. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 213 (02) :341-347
[8]   Prions and orthopedic surgery [J].
Doerr, HW ;
Cinatl, J ;
Stürmer, M ;
Rabenau, HF .
INFECTION, 2003, 31 (03) :163-171
[9]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[10]   Mesenchymal stem cells cultured on a collagen scaffold:: In vitro osteogenic differentiation [J].
Donzelli, E. ;
Salvade, A. ;
Mimo, P. ;
Vigano, M. ;
Morrone, M. ;
Papagna, R. ;
Carini, F. ;
Zaopo, A. ;
Miloso, M. ;
Baldoni, M. ;
Tredici, G. .
ARCHIVES OF ORAL BIOLOGY, 2007, 52 (01) :64-73