In situ study of solid-state synthesis of Li4Ti5O12-Li2TiO3 and Li4Ti5O12-TiO2 composites

被引:6
作者
Kozlova, Anna [1 ,2 ]
Uvarov, Nikolai [1 ,2 ]
Sharafutdinov, Marat [1 ,3 ]
Gerasimov, Evgeniy [4 ]
Mateyshina, Yuliya [1 ,2 ]
机构
[1] SB RAS, Inst Solid State Chem & Mechanochem, Kutateladze Str 18, Novosibirsk 630128, Russia
[2] Novosibirsk State Tech Univ, KMarksa Ave, 20, Novosibrsk 630073, Russia
[3] Boreskov Inst CatalysisSB RAS, Synchrotron Radiat Facil SKIF, Synchrotron Radiat Facil SKIF, Nikolskiy Prospekt 1, Koltsov 630559, Russia
[4] Boreskov Inst Catalysis SB RAS, Boreskov Inst Catalysis, Novosibirsk 630090, Russia
关键词
LTO-Li2TiO3; Solid-state synthesis; Grain boundary; ANODE MATERIALS; ION BATTERIES; LI; BETA-LI2TIO3; STABILITY; STORAGE; SPINEL; TIO2;
D O I
10.1016/j.jssc.2022.123302
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Lithium titanate Li4Ti5O12 (LTO) with a spinel structure has been actively studied as a potential candidate for the negative electrode material in lithium ion batteries. In this work, LTO-Li2TiO3 (LTC) and LTO-TiO2 (LTT) composites were investigated. The use of powder X-ray diffraction (PXRD) with synchrotron radiation (SR) made it possible to trace the process of formation of the composites in situ and obtain information on changes in the phase composition of reaction products depending on the temperature and the ratio of the initial reagents, Li2CO3 and TiO2. It was found that irrespective of the initial ratio of reagents (lack of Li2CO3, stoichiometric ratio or excess of Li2CO3 for LTC, LTO and LTT samples, respectively), the synthesis proceeds in three stages, including formation of nanocrystalline Li2TiO3 as intermediate phase. LTC composites consist of microparticles of Li4Ti5O12phase covered by a layer of Li2TiO3phase, whereas in LTT composites large particles of TiO2 phase are surrounded by microparticles of LTO phase. Electrochemical studies showed that LTT composites have relatively low capacity as expected assuming that TiO2 is electrochemically inactive phase in the composites. In contrast, LTC composites have a specific capacity of 187 mAh/g that exceeds the theoretically expected capacity values. According to highresolution electron microscopy data (HREM), LTC composites have a large number of Li4Ti5O12/Li2TiO3 interfaces, which are diffuse and seem to be coherent due to similarity of crystal structures LTO and Li2TiO3.
引用
收藏
页数:10
相关论文
共 42 条
[21]   An investigation of Li2TiO3-coke composite anode material for Li-ion batteries [J].
Liu, Youlin ;
Li, Wensheng ;
Zhou, Xiaoping .
RSC ADVANCES, 2019, 9 (31) :17835-17840
[22]   High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries [J].
Lu, Jun ;
Chen, Zhongwei ;
Pan, Feng ;
Cui, Yi ;
Amine, Khalil .
ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) :35-53
[23]   Nanoscale Coating of LiMO2 (M = Ni, Co, Mn) Nanobelts with Li+-Conductive Li2TiO3: Toward Better Rate Capabilities for Li-Ion Batteries [J].
Lu, Jun ;
Peng, Qing ;
Wang, Weiyang ;
Nan, Caiyun ;
Li, Lihong ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (05) :1649-1652
[24]   Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison [J].
Mahmoud, Abdelfattah ;
Manuel Amarilla, Jose ;
Lasri, Karima ;
Saadoune, Ismael .
ELECTROCHIMICA ACTA, 2013, 93 :163-172
[25]   Nanoionics: ion transport and electrochemical storage in confined systems [J].
Maier, J .
NATURE MATERIALS, 2005, 4 (11) :805-815
[26]   IONIC-CONDUCTION IN-SPACE CHARGE REGIONS [J].
MAIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (03) :171-263
[27]   Structural and dielectric properties of Li2O-doped TiO2 [J].
Mergos, J. A. ;
Dervos, C. T. .
MATERIALS CHARACTERIZATION, 2009, 60 (08) :848-857
[28]   Study of arabinogalactan supramolecular structure using synchrotron radiation SAXS and terahertz laser ablation methods [J].
Mikhailenko, M. A. ;
Sharafutdinov, M. R. ;
Kozlov, A. S. ;
Kuznetsova, S. A. ;
Shakhtshneider, T. P. ;
Zolotarev, K., V .
Proceedings of the International Conference Synchrotron and Free Electron Laser Radiation: Generation and Application (SFR-2016), 2016, 84 :382-385
[29]  
Ohtake T, 2015, J Mater Sci Chem Eng, V3, P5
[30]   Can Li-Ion batteries be the panacea for automotive applications? [J].
Opitz, A. ;
Badami, P. ;
Shen, L. ;
Vignarooban, K. ;
Kannan, A. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :685-692