A 2.6 μW-1.2 mW Autonomous Electromagnetic Vibration Energy Harvester Interface IC with Conduction-Angle-Controlled MPPT and up to 95% Efficiency

被引:32
作者
Leicht, Joachim [1 ,2 ]
Manoli, Yiannos [2 ,3 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn IMTEK, Fritz Huettinger Chair Microelect, D-79110 Freiburg, Germany
[2] Univ Freiburg, BrainLinks BrainTools Cluster Excellence, D-79110 Freiburg, Germany
[3] Hahn Schickard, D-78052 Villingen Schwenningen, Germany
关键词
AC-DC; conduction angle; DC-DC; efficient; energy harvesting; maximum power point tracking (MPPT); vibration; CIRCUIT; RECTIFIER; SYSTEM; PLATFORM; INPUT;
D O I
10.1109/JSSC.2017.2702667
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an IC optimized to interface small-scaled electromagnetic vibration energy harvesters. The interface IC tracks the optimum conduction angle of the implemented active AC-DC input stage, enabling maximum power point tracking without the need for a system clock, harvester disconnection, or any external sensor. The optimum conduction angle tracking control nominally requires 815 nW. An energy buffer can autonomously be charged via the interface, employing a hysteretic input voltage-controlled inductive DC-DC boost converter, to 4.2 V for IC input powers between 2.6 mu W and 1.2 mW with a peak power conversion efficiency of 95%. The 4.2 V is even reached when harvesting from weak vibrations of only 0.2 m/s(2) acceleration peak amplitudes and input voltages of around 570 mV. Buffer charging with up to 91% of the maximal available harvester power is accomplished, and cold startup is enabled. The IC prototype in 0.35 mu m CMOS draws a quiescent current of 272 nA from the energy buffer at 4.2 V and a quiescent power of 639 nW at 3 V. In order to supply an application, such as a wireless sensor node, the IC can be configured to generate a regulated voltage and to ensure reliable operation by means of an overvoltage protection.
引用
收藏
页码:2448 / 2462
页数:15
相关论文
共 63 条
[1]   A Micro Inertial Energy Harvesting Platform With Self-Supplied Power Management Circuit for Autonomous Wireless Sensor Nodes [J].
Aktakka, Ethem Erkan ;
Najafi, Khalil .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (09) :2017-2029
[2]  
[Anonymous], EN SELF SUFF SENS 20
[3]  
[Anonymous], 2014, ENFILM RECHARGEABLE
[4]  
[Anonymous], 2014, PROGR OUTP VOLT ULTR
[5]   Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction [J].
Arroyo, E. ;
Badel, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 171 (02) :266-273
[6]   Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor [J].
Bandyopadhyay, Saurav ;
Chandrakasan, Anantha P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (09) :2199-2215
[7]   Tuning a resonant energy harvester using a generalized electrical load [J].
Cammarano, A. ;
Burrow, S. G. ;
Barton, D. A. W. ;
Carrella, A. ;
Clare, L. R. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
[8]   Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling [J].
Cepnik, C. ;
Radler, O. ;
Rosenbaum, S. ;
Stroehla, T. ;
Wallrabe, U. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 167 (02) :416-421
[9]  
Cepnik C., 2011, P POW MEMS11, P70
[10]   A Direct AC-DC and DC-DC Cross-Source Energy Harvesting Circuit with Analog Iterating-Based MPPT Technique with 72.5% Conversion Efficiency and 94.6% Tracking Efficiency [J].
Chen, Shin-Hao ;
Huang, Tzu-Chi ;
Ng, Shao Siang ;
Lin, Kuei-Liang ;
Du, Ming-Jhe ;
Kang, Yu-Chai ;
Chen, Ke-Horng ;
Wey, Chin-Long ;
Lin, Ying-Hsi ;
Lee, Chao-Cheng ;
Lin, Jian-Ru ;
Tsai, Tsung-Yen .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (08) :5885-5899