The Nakayama automorphism of a self-injective preprojective algebra

被引:3
作者
Grant, Joseph [1 ]
机构
[1] Univ East Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
基金
英国工程与自然科学研究理事会;
关键词
16D50; 16E60 (primary); 16G10; 16G70 (secondary); REPRESENTATION-FINITE ALGEBRAS;
D O I
10.1112/blms.12313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof, using Auslander-Reiten theory, that the preprojective algebra of a basic hereditary algebra of finite representation type is Frobenius. We then describe its Nakayama automorphism, which is induced by the Nakayama functor on the module category of our hereditary algebra.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 24 条
[1]  
[Anonymous], LECT NOTES PURE APPL
[2]  
AUSLANDER M, 1997, CAMBRIDGE STUDIES AD, V36
[3]  
AUSLANDER M., 1996, REPRESENTATION THEOR, V18, P39
[4]   THE PREPROJECTIVE ALGEBRA OF A TAME HEREDITARY ARTIN ALGEBRA [J].
BAER, D ;
GEIGLE, W ;
LENZING, H .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) :425-457
[5]   Periodic algebras which are almost Koszul [J].
Brenner, S ;
Butler, MCR ;
King, AD .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :331-367
[6]  
BUChwEITz R.-O., 1998, Contemp. Math., V229, P81
[7]   Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities [J].
Crawley-Boevey, W .
COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) :548-574
[8]   The Nakayama Automorphism of the Almost Calabi-Yau Algebras Associated to SU(3) Modular Invariants [J].
Evans, David E. ;
Pugh, Mathew .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (01) :179-222
[9]   CORRECTION [J].
GABRIEL, P .
MANUSCRIPTA MATHEMATICA, 1972, 6 (03) :309-&
[10]  
Gabriel P., 1980, LECT NOTES MATH, P1