Finite-Time Function Projective Synchronization in Complex Multi-links Networks with Time-Varying Delay

被引:41
作者
Wang, Weiping [1 ]
Peng, Haipeng [2 ]
Li, Lixiang [2 ]
Xiao, Jinghua [1 ]
Yang, Yixian [2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Informat Secur Ctr, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Natl Engn Lab Disaster Backup & Recovery, Beijing 100876, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Complex network; Finite-time function projective synchronization; Nonlinear feedback control; NEURAL-NETWORKS; DISCRETE-TIME; CHAOTIC SYSTEM; DYNAMICAL NETWORKS; PARAMETER; MODEL;
D O I
10.1007/s11063-013-9335-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the problem of finite-time function projective synchronization in complex multi-links networks with time-varying delay. A nonlinear feedback controller is designed to achieve finite-time function projective synchronization. Some novel and useful finite-time function projective synchronization criteria are derived based on finite-time stability theory. And another controller is designed to ensure function projective synchronization of complex multi-links networks with time-varying delay. Finally, illustrative examples are given to show the feasibility of the proposed method.
引用
收藏
页码:71 / 88
页数:18
相关论文
共 33 条
[1]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Finite-time generalized synchronization of chaotic systems with different order [J].
Cai, Na ;
Li, Wuquan ;
Jing, Yuanwei .
NONLINEAR DYNAMICS, 2011, 64 (04) :385-393
[4]   Desynchronizing a chaotic pattern recognition neural network to model inaccurate perception [J].
Calitoiu, Dragos ;
Oommen, B. John ;
Nussbaum, Doron .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (03) :692-704
[5]  
Chen M, 2012, ICCAIS SAIG, P72
[6]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[7]   Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control [J].
Du, Hongyue ;
Shi, Peng ;
Lu, Ning .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) :1182-1190
[8]   Robust function projective synchronization of two different chaotic systems with unknown parameters [J].
Du, Hongyue ;
Li, Feng ;
Meng, Guangshi .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10) :2782-2794
[9]   Function projective synchronization in coupled chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong ;
Ling, Mingxiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :705-712
[10]  
Du HY, 2009, INT J INNOV COMPUT I, V5, P2239