Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1

被引:19
作者
Dumeau, Charles-Etienne [1 ]
Monfort, Asun [1 ]
Kissling, Lucas [1 ,2 ]
Swarts, Daan C. [2 ,3 ]
Jinek, Martin [2 ]
Wutz, Anton [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Inst Mol Hlth Sci, Dept Biol, Zurich, Switzerland
[2] Univ Zurich, Dept Biochem, Zurich, Switzerland
[3] Wageningen Univ, Dept Agrotechnol & Food Sci, Lab Biochem, NL-6708 WE Wageningen, Netherlands
基金
瑞士国家科学基金会;
关键词
CRISPR-Cas; Cas12a; Cpf1; Electroporation; Mutation; Mouse embryo; Gene deletion; ONE-STEP GENERATION; CRISPR/CAS; KNOCKOUT; CPF1; MICE; ENDONUCLEASE; ZEBRAFISH; COMPLEX;
D O I
10.1007/s11248-019-00168-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-associated (Cas) nucleases are established tools for engineering of animal genomes. These programmable RNA-guided nucleases have been introduced into zygotes using expression vectors, mRNA, or directly as ribonucleoprotein (RNP) complexes by different delivery methods. Whereas microinjection techniques are well established, more recently developed electroporation methods simplify RNP delivery but can provide less consistent efficiency. Previously, we have designed Cas12a-crRNA pairs to introduce large genomic deletions in the Ubn1, Ubn2, and Rbm12 genes in mouse embryonic stem cells (ESC). Here, we have optimized the conditions for electroporation of the same Cas12a RNP pairs into mouse zygotes. Using our protocol, large genomic deletions can be generated efficiently by electroporation of zygotes with or without an intact zona pellucida. Electroporation of as few as ten zygotes is sufficient to obtain a gene deletion in mice suggesting potential applicability of this method for species with limited availability of zygotes.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 33 条
[1]   Revealing hidden complexities of genomic rearrangements generated with Cas9 [J].
Boroviak, Katharina ;
Fu, Beiyuan ;
Yang, Fengtang ;
Doe, Brendan ;
Bradley, Allan .
SCIENTIFIC REPORTS, 2017, 7
[2]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[3]   The crystal structure of Cpf1 in complex with CRISPR RNA [J].
Dong, De ;
Ren, Kuan ;
Qiu, Xiaolin ;
Zheng, Jianlin ;
Guo, Minghui ;
Guan, Xiaoyu ;
Liu, Hongnan ;
Li, Ningning ;
Zhang, Bailing ;
Yang, Daijun ;
Ma, Chuang ;
Wang, Shuo ;
Wu, Dan ;
Ma, Yunfeng ;
Fan, Shilong ;
Wang, Jiawei ;
Gao, Ning ;
Huang, Zhiwei .
NATURE, 2016, 532 (7600) :522-+
[4]   The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA [J].
Fonfara, Ines ;
Richter, Hagen ;
Bratovic, Majda ;
Le Rhun, Anais ;
Charpentier, Emmanuelle .
NATURE, 2016, 532 (7600) :517-+
[5]   One-step generation of knockout pigs by zygote injection of CRISPR/Cas system [J].
Hai, Tang ;
Teng, Fei ;
Guo, Runfa ;
Li, Wei ;
Zhou, Qi .
CELL RESEARCH, 2014, 24 (03) :372-375
[6]   Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse [J].
Hashimoto, Masakazu ;
Yamashita, Yukiko ;
Takemoto, Tatsuya .
DEVELOPMENTAL BIOLOGY, 2016, 418 (01) :1-9
[7]   Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing [J].
Hashimoto, Masakazu ;
Takemoto, Tatsuya .
SCIENTIFIC REPORTS, 2015, 5
[8]   CRISPR/Cas, the Immune System of Bacteria and Archaea [J].
Horvath, Philippe ;
Barrangou, Rodolphe .
SCIENCE, 2010, 327 (5962) :167-170
[9]   Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins [J].
Hur, Junho K. ;
Kim, Kyoungmi ;
Been, Kyung Wook ;
Baek, Gayoung ;
Ye, Sunghyeok ;
Hur, Junseok W. ;
Ryu, Seuk-Min ;
Lee, Youn Su ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :807-808
[10]   Efficient genome editing in zebrafish using a CRISPR-Cas system [J].
Hwang, Woong Y. ;
Fu, Yanfang ;
Reyon, Deepak ;
Maeder, Morgan L. ;
Tsai, Shengdar Q. ;
Sander, Jeffry D. ;
Peterson, Randall T. ;
Yeh, J-R Joanna ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :227-229