STRONG CONVERGENCE OF ITERATIVE SCHEMES FOR NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

被引:0
作者
Jung, Jong Soo [1 ]
机构
[1] Dong A Univ, Dept Math, Pusan 604714, South Korea
关键词
Viscosity approximation methods; Nonexpansive semi-groups; Common fixed points; implicit iterative scheme; explicit iterative scheme; Contraction; strictly convex; Uniformly Gateaux differentiable norm; Variational inequality; VISCOSITY APPROXIMATION METHODS; ACCRETIVE-OPERATORS; FIXED-POINTS; HILBERT-SPACES; THEOREMS; MAPPINGS; RESOLVENTS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Strong convergences of the implicit iterative scheme and the. explicit iterative scheme for nonexpansive semigroup are established in a reflexive and strictly convex Banach space having a uniformly Gateuax differentiable norm. Certain different control conditions of tire explicit iterative scheme are given.
引用
收藏
页码:613 / 629
页数:17
相关论文
共 21 条
[1]   An explicit construction of sunny nonexpansive retractions in Banach spaces [J].
Aleyner, Arkady ;
Reich, Simeon .
FIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (03) :295-305
[2]  
Barbu V., 1978, CONVEXITY OPTIMIZATI
[3]  
BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
[4]  
CHANG SS, STRONG CONVERGENCE T
[5]  
Cioranescu I., 1990, Mathematics and Its Applications, V62
[6]  
Goebel K, 1984, Uniform convexity, hyperbolic geometry, and non-expansive mappings
[7]  
Goebel K., 1990, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, V28
[8]   STRONG-CONVERGENCE THEOREMS FOR ACCRETIVE-OPERATORS IN BANACH-SPACES [J].
HA, KS ;
JUNG, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :330-339
[9]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[10]   The Mann process for perturbed m-accretive operators in Banach spaces [J].
Jung, JS ;
Morales, CH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (02) :231-243