Adaptive features of aquatic mammals' eye

被引:85
作者
Mass, Alla M. [1 ]
Supin, Alexander Ya. [1 ]
机构
[1] Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
来源
ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY | 2007年 / 290卷 / 06期
关键词
vision; ocular optics; retina; ganglion cells; retinal topography; aquatic mammals;
D O I
10.1002/ar.20529
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The eye of aquatic mammals demonstrates several adaptations to both underwater and aerial vision. This study offers a review of eye anatomy in four groups of aquatic animals: cetaceans (toothed and baleen whales), pinnipeds (seals, sea lions, and walruses), sirenians (manatees and dugongs), and sea otters. Eye anatomy and optics, retinal laminar morphology, and topography of ganglion cell distribution are discussed with particular reference to aquatic specializations for underwater versus aerial vision. Aquatic mammals display emmetropia (i.e., refraction of light to focus on the retina) while submerged, and most have mechanisms to achieve emmetropia above water to counter the resulting aerial myopia. As underwater vision necessitates adjusting to wide variations in luminosity, iris muscle contractions create species-specific pupil shapes that regulate the amount of light entering the pupil and, in pinnipeds, work in conjunction with a reflective optic tapetum. The retina of aquatic mammals is similar to that of nocturnal terrestrial mammals in containing mainly rod photoreceptors and a minor number of cones (however, residual color vision may take place). A characteristic feature of the cetacean and pinniped retina is the large size of ganglion cells separated by wide intercellular spaces. Studies of topographic distribution of ganglion cells in the retina of cetaceans revealed two areas of ganglion cell concentration (the best-vision areas) located in the temporal and nasal quadrants; pinnipeds, sirenians, and sea otters have only one such area. In general, the visual system of marine mammals demonstrates a high degree of development and several specific features associated with adaptation for vision in both the aquatic and aerial environments.
引用
收藏
页码:701 / 715
页数:15
相关论文
共 91 条
  • [1] Bjerager Poul, 2003, Aquatic Mammals, V29, P31, DOI 10.1578/016754203101024059
  • [2] BRAEKEVELT CR, 1986, ACTA ANAT, V127, P81
  • [3] THE PHOTORECEPTORS OF THE WEST-INDIAN-MANATEE
    COHEN, JL
    TUCKER, GS
    ODELL, DK
    [J]. JOURNAL OF MORPHOLOGY, 1982, 173 (02) : 197 - 202
  • [4] Dawson W.W., 1972, Cetology, VNo. 10, P1
  • [5] UNUSUAL RETINAL CELLS IN DOLPHIN EYE
    DAWSON, WW
    PEREZ, JM
    [J]. SCIENCE, 1973, 181 (4101) : 747 - 749
  • [6] GIANT NEURAL SYSTEMS IN THE INNER RETINA AND OPTIC-NERVE OF SMALL WHALES
    DAWSON, WW
    HAWTHORNE, MN
    JENKINS, RL
    GOLDSTON, RT
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 1982, 205 (01) : 1 - 7
  • [7] THE OCULAR FUNDUS OF 2 CETACEANS
    DAWSON, WW
    SCHROEDER, JP
    DAWSON, JF
    [J]. MARINE MAMMAL SCIENCE, 1987, 3 (01) : 1 - 13
  • [8] CORNEAL SURFACE-PROPERTIES OF 2 MARINE MAMMAL SPECIES
    DAWSON, WW
    SCHROEDER, JP
    SHARPE, SN
    [J]. MARINE MAMMAL SCIENCE, 1987, 3 (02) : 186 - 197
  • [9] STATIC AND KINETIC-PROPERTIES OF THE DOLPHIN PUPIL
    DAWSON, WW
    ADAMS, CK
    BARRIS, MC
    LITZKOW, CA
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1979, 237 (05): : R301 - R305
  • [10] Dawson WW, 1980, CETACEAN BEHAV MECH, P53