HARMONIC ANALYSIS MEETS CRITICAL KNOTS. CRITICAL POINTS OF THE MOBIUS ENERGY ARE SMOOTH

被引:31
作者
Blatt, Simon [1 ,2 ]
Reiter, Philipp [3 ]
Schikorra, Armin [4 ,5 ]
机构
[1] Karlsruher Inst Technol, Inst Anal, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Salzburg Univ, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[3] Univ Duisburg Essen, Fak Math, Forsthausweg 2, D-45117 Essen, Germany
[4] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[5] Univ Basel, Fachbereich Math, Spiegelgasse 1, CH-4051 Basel, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
REGULARITY; MAPS; SURFACE;
D O I
10.1090/tran/6603
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the Coulomb potential of an equidistributed charge on a curve, Jun O'Hara introduced and investigated the first geometric knot energy, the Mobius energy. We prove that every critical curve of this Mobius energy is of class C-infinity and thus extend the corresponding result due to Freedman, He, and Wang for minimizers of the Mobius energy. In contrast to the techniques used by Freedman, He, and Wang, our methods do to not use the Mobius invariance of the energy, but rely on purely analytic methods motivated from a formal similarity of the Euler-Langrange equation to the half harmonic map equation for the unit tangent.
引用
收藏
页码:6391 / 6438
页数:48
相关论文
共 36 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], LECT NOTES
[3]  
[Anonymous], 2008, GRADUATE TEXTS MATH, DOI DOI 10.1007/978-0-387-09432-8_1
[4]   THE ENERGY SPACES OF THE TANGENT POINT ENERGIES [J].
Blatt, Simon .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (03) :261-270
[5]   Stationary points of O'Hara's knot energies [J].
Blatt, Simon ;
Reiter, Philipp .
MANUSCRIPTA MATHEMATICA, 2013, 140 (1-2) :29-50
[6]   BOUNDEDNESS AND REGULARIZING EFFECTS OF O'HARA'S KNOT ENERGIES [J].
Blatt, Simon .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (01)
[7]   The gradient flow of the Mobius energy near local minimizers [J].
Blatt, Simon .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :403-439
[8]  
Coifman Ronald R., 1978, ASTERISQUE, V57
[9]   n/p-harmonic maps: Regularity for the sphere case [J].
Da Lio, Francesca ;
Schikorra, Armin .
ADVANCES IN CALCULUS OF VARIATIONS, 2014, 7 (01) :1-26
[10]   Fractional harmonic maps into manifolds in odd dimension n > 1 [J].
Da Lio, Francesca .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (3-4) :421-445