Exploring 5d BPS Spectra with Exponential Networks

被引:27
作者
Banerjee, Sibasish [1 ,2 ]
Longhi, Pietro [3 ,4 ,5 ]
Romo, Mauricio [6 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appellstr 2, D-30167 Hannover, Germany
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
[5] Inst Adv Study, Sch Nat Sci, Olden Lane, Princeton, NJ 08540 USA
[6] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
来源
ANNALES HENRI POINCARE | 2019年 / 20卷 / 12期
基金
瑞士国家科学基金会;
关键词
MIRROR SYMMETRY; FIELD-THEORIES; GAUGE-THEORIES; INVARIANTS; INSTANTONS; MONOPOLES; DUALITY; STRINGS; STATES;
D O I
10.1007/s00023-019-00851-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop geometric techniques for counting BPS states in five-dimensional gauge theories engineered by M theory on a toric Calabi-Yau threefold. The problem is approached by studying framed 3d-5d wall-crossing in the presence of a single M5 brane wrapping a special Lagrangian submanifold L. The spectrum of 3d-5d BPS states is encoded by the geometry of the manifold of vacua of the 3d-5d system, which further coincides with the mirror curve describing moduli of the Lagrangian brane. The information about the BPS spectrum is extracted from the geometry of the mirror curve by construction of a nonabelianization map for the exponential networks. For the simplest Calabi-Yau, C-3 we reproduce the count of 5d BPS states and match predictions of 3d tt* geometry for the count of 3d-5d BPS states. We comment on applications of our construction to the study of enumerative invariants of toric Calabi-Yau threefolds.
引用
收藏
页码:4055 / 4162
页数:108
相关论文
共 89 条
[1]  
Aganagic M, 2002, Z NATURFORSCH A, V57, P1
[2]  
AGANAGIC M, ARXIVHEPTH0012041
[3]  
AGANAGIC M, 2001, J HIGH ENERGY PHYS
[4]  
Aganagic M, 2006, ADV THEOR MATH PHYS, V10, P603
[5]  
Aganagic M, 2014, ADV THEOR MATH PHYS, V18, P827
[6]   Wall Crossing and M-Theory [J].
Aganagic, Mina ;
Ooguri, Hirosi ;
Vafa, Cumrun ;
Yamazaki, Masahito .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (02) :569-584
[7]   From 3d duality to 2d duality [J].
Aharony, Ofer ;
Razamat, Shlomo S. ;
Willett, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11)
[8]  
Alexandrov S., ARXIV180406928
[9]   Rigid limit for hypermultiplets and five-dimensional gauge theories [J].
Alexandrov, Sergei ;
Banerjee, Sibasish ;
Longhi, Pietro .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01)
[10]   Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence [J].
Alexandrov, Sergei ;
Persson, Daniel ;
Pioline, Boris .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)