Wiman-Valiron method for difference equations

被引:62
作者
Ishizaki, K [1 ]
Yanagihara, N [1 ]
机构
[1] Nippon Inst Technol, Dept Math, Saitama 3450826, Japan
关键词
D O I
10.1017/S0027763000008916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (z) be an entire function of order less than 1/2. We consider an analogue of the Wiman-Valiron theory rewriting power series of f (z) into binomial series. As an application, it is shown that if a transcendental entire solution f (z) of a linear difference equation is of order X < 1/2, then we have log M(r, f) = Lr-x (1 + o(1)) with a constant L > 0.
引用
收藏
页码:75 / 102
页数:28
相关论文
共 10 条
[1]  
Bank S., 1976, FUNKC EKVACIOJ-SER I, V19, P53
[2]  
BERGWEILER W., 2002, I.-Aequationes Math., V63, P140, DOI DOI 10.1007/S00010-002-8012-X
[3]  
Boas R. P., 1954, PURE APPL MATH, V5
[4]   The possible orders of solutions of linear differential equations with polynomial coefficients [J].
Gundersen, GG ;
Steinbart, EM ;
Wang, SP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (03) :1225-1247
[5]   LOCAL GROWTH OF POWER-SERIES - SURVEY OF WIMAN-VALIRON METHOD [J].
HAYMAN, WK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (03) :317-358
[6]  
Helmrath W., 1984, COMPLEX VAR THEORY A, V3, P253
[7]  
KOVARI T, 1961, J ANAL MATH, V9, P71, DOI DOI 10.1007/BF02795340
[8]  
LAINE I, 1992, NEVANLIANNA THEORY C
[9]  
Norlund N.E., 1954, Vorlesungen uber Differenzenrechnung
[10]  
Wittich H., 1955, Neuere U ntersuchungen Uber eindeutige analytische Funktionen